IDNLearn.com is your trusted platform for finding reliable answers. Get the information you need from our community of experts who provide accurate and comprehensive answers to all your questions.

Find the volume formed by rotating the region enclosed by [tex]\(x = 2.5 y\)[/tex] and [tex]\(y^3 = x\)[/tex] with [tex]\(y \geq 0\)[/tex] about the [tex]\(y\)[/tex]-axis.

Sagot :

Certainly! Let's find the volume formed by rotating the region enclosed by the curves [tex]\(x = 2.5y\)[/tex] and [tex]\(x = y^3\)[/tex] with [tex]\(y \geq 0\)[/tex] about the [tex]\(y\)[/tex]-axis.

### Step 1: Find the Points of Intersection
First, we need to determine where the two curves intersect. To find these points, we set the equations equal to each other:

[tex]\[ 2.5y = y^3 \][/tex]

Rearranging the equation, we get:

[tex]\[ y^3 - 2.5y = 0 \][/tex]

Factor out [tex]\(y\)[/tex]:

[tex]\[ y(y^2 - 2.5) = 0 \][/tex]

This gives us the solutions:

[tex]\[ y = 0 \quad \text{or} \quad y^2 = 2.5 \][/tex]

Solving for [tex]\(y^2 = 2.5\)[/tex], we get:

[tex]\[ y = \sqrt{2.5} \quad \text{or} \quad y = -\sqrt{2.5} \][/tex]

However, since we are only considering [tex]\(y \geq 0\)[/tex]:

[tex]\[ y = 0 \quad \text{and} \quad y = \sqrt{2.5} \][/tex]

Note that [tex]\(\sqrt{2.5}\)[/tex] can be simplified further to:

[tex]\[ y = \sqrt{2.5} = \sqrt{2.5} = \sqrt{ \frac{25}{10}} = \frac{5}{\sqrt{10}} = \frac{5 \cdot \sqrt{10}}{10} = \frac{\sqrt{25}}{\sqrt{4}} = 1.58113883008419 \][/tex]

Thus, the points of intersection are:

[tex]\[ y = 0 \quad \text{and} \quad y = 1.58113883008419 \][/tex]

### Step 2: Set Up the Integral for the Washer Method
Next, we rotate the region around the [tex]\(y\)[/tex]-axis. This requires us to employ the washer method to find the volume. The volume formula for the washer method when rotating about the [tex]\(y\)[/tex]-axis is given by:

[tex]\[ V = \pi \int_{a}^{b} \left( R(y)^2 - r(y)^2 \right) dy \][/tex]

Here, [tex]\(R(y)\)[/tex] is the outer radius, and [tex]\(r(y)\)[/tex] is the inner radius for the given [tex]\(y\)[/tex]. In our case:

- The outer radius is given by the line [tex]\(x = 2.5y\)[/tex].
- The inner radius is given by the curve [tex]\(x = y^3\)[/tex].

So, [tex]\(R(y) = 2.5y\)[/tex] and [tex]\(r(y) = y^3\)[/tex]. Therefore, the volume integral becomes:

[tex]\[ V = \pi \int_{0}^{1.58113883008419} \left[ (2.5y)^2 - (y^3)^2 \right] dy \][/tex]

Simplify the integrand:

[tex]\[ (2.5y)^2 = 6.25y^2 \][/tex]
[tex]\[ (y^3)^2 = y^6 \][/tex]

Thus, the integral is:

[tex]\[ V = \pi \int_{0}^{1.58113883008419} (6.25y^2 - y^6) \, dy \][/tex]

### Step 3: Compute the Integral
Now, integrate the function within the bounds:

[tex]\[ \int_{0}^{1.58113883008419} (6.25y^2 - y^6) \, dy \][/tex]

Find the indefinite integral first:

[tex]\[ \int (6.25y^2 - y^6) \, dy = 6.25 \int y^2 \, dy - \int y^6 \, dy \][/tex]

This gives:

[tex]\[ 6.25 \cdot \frac{y^3}{3} - \frac{y^7}{7} = \frac{6.25}{3}y^3 - \frac{y^7}{7} \][/tex]

Now, we evaluate this expression from 0 to 1.58113883008419:

[tex]\[ \left[ \frac{6.25}{3} y^3 - \frac{y^7}{7} \right]_{0}^{1.58113883008419} \][/tex]

At [tex]\(y = 1.58113883008419\)[/tex]:

[tex]\[ \frac{6.25}{3} (1.58113883008419)^3 - \frac{(1.58113883008419)^7}{7} = 4.70577032763152 \][/tex]

At [tex]\(y = 0\)[/tex], the terms vanish. So:

[tex]\[ \left[ \frac{6.25}{3} y^3 - \frac{y^7}{7} \right]_{0}^{1.58113883008419} = 4.70577032763152 \][/tex]

### Step 4: Calculate the Volume
Finally, multiply by [tex]\(\pi\)[/tex]:

[tex]\[ V = \pi \times 4.70577032763152 = 14.7836134907680 \][/tex]

Therefore, the volume formed by rotating the given region about the [tex]\(y\)[/tex]-axis is:

[tex]\[ \boxed{14.7836134907680} \][/tex]
Thank you for participating in our discussion. We value every contribution. Keep sharing knowledge and helping others find the answers they need. Let's create a dynamic and informative learning environment together. For trustworthy answers, rely on IDNLearn.com. Thanks for visiting, and we look forward to assisting you again.