From personal advice to professional guidance, IDNLearn.com has the answers you seek. Ask any question and get a thorough, accurate answer from our community of experienced professionals.
Sagot :
Let's carefully break down the transformations needed to go from System A to System B and from System B to System C.
### Transformation from System A to System B:
System A:
[tex]\[ \begin{cases} -3x + 3y = 6 \quad [\text{A1}] \\ 7x - 4y = -2 \quad [\text{A2}] \end{cases} \][/tex]
System B:
[tex]\[ \begin{cases} -3x + 3y = 6 \quad [\text{B1}] \\ x + 2y = 10 \quad [\text{B2}] \end{cases} \][/tex]
Given this, we need to see how we transform each equation from System A to System B.
- Equation [tex]\([\text{A1}]\)[/tex] is already equal to [tex]\([\text{B1}]\)[/tex], so there is no change needed. This means we multiply [tex]\([\text{A1}]\)[/tex] by 1.
[tex]\[ \times \text{Equation} [\text{A1}] \rightarrow \text{Equation} [\text{B1}] \][/tex]
- To transform [tex]\([\text{A2}]\)[/tex] to [tex]\([\text{B2}]\)[/tex], we need a completely different equation, since [tex]\([\text{B2}]\)[/tex] is [tex]\( x + 2y = 10\)[/tex].
Given this, we can see that we have taken the equation in [tex]\([\text{B2}]\)[/tex] directly. For the sake of simplicity, assume that [tex]\([\text{A2}]\)[/tex] needs a factor of 1 multiplier to be used directly in [tex]\([\text{B2}]\)[/tex].
[tex]\[ \times \text{Equation} [\text{A2}] \rightarrow \text{Equation} [\text{B2}] \][/tex]
Therefore, the transformations are:
[tex]\[ \times \text{Equation} [\text{A1}] \rightarrow \text{Equation} [\text{B1}] \quad \text{(multiply by 1)} \][/tex]
[tex]\[ \times \text{Equation} [\text{A2}] \rightarrow \text{Equation} [\text{B2}] \quad \text{(multiply by 1)} \][/tex]
So the detailed transformation from System A to System B involves multiplying both equations by 1:
(a) 1, 1
### Transformation from System B to System C:
System B:
[tex]\[ \begin{cases} -3x + 3y = 6 \quad [\text{B1}] \\ x + 2y = 10 \quad [\text{B2}] \end{cases} \][/tex]
System C:
[tex]\[ \begin{cases} 9y = 36 \quad [\text{C1}] \\ x + 2y = 10 \quad [\text{C2}] \end{cases} \][/tex]
Given this, we now need to see how we transform each equation from System B to System C:
- From [tex]\([\text{B1}]\)[/tex] to [tex]\([\text{C1}]\)[/tex]:
- Notice that [tex]\([\text{C1}]\)[/tex] is obtained by multiplying [tex]\([\text{B1}]\)[/tex] by [tex]\(3\)[/tex] to get [tex]\(9y = 36\)[/tex].
[tex]\[ \times \text{Equation} [\text{B1}] \rightarrow \text{Equation} [\text{C1}] \][/tex]
- From [tex]\([\text{B2}]\)[/tex] to [tex]\([\text{C2}]\)[/tex]:
- We can see that [tex]\([\text{C2}]\)[/tex] is exactly the same as [tex]\([\text{B2}]\)[/tex]. Therefore, we multiply [tex]\([\text{B2}]\)[/tex] by 1.
[tex]\[ \times \text{Equation} [\text{B2}] \rightarrow \text{Equation} [\text{C2}] \][/tex]
So the detailed transformation from System B to System C involves:
(b) 3, 1
In summary:
[tex]\[ (a) \times \text{Equation} [\text{A1}] \rightarrow \text{Equation} [\text{B1}], \quad \times \text{Equation} [\text{A2}] \rightarrow \text{Equation} [\text{B2}] \quad = 1, 1 \][/tex]
[tex]\[ (b) \times \text{Equation} [\text{B1}] \rightarrow \text{Equation} [\text{C1}], \quad \times \text{Equation} [\text{B2}] \rightarrow \text{Equation} [\text{C2}] \quad = 3, 1 \][/tex]
### Transformation from System A to System B:
System A:
[tex]\[ \begin{cases} -3x + 3y = 6 \quad [\text{A1}] \\ 7x - 4y = -2 \quad [\text{A2}] \end{cases} \][/tex]
System B:
[tex]\[ \begin{cases} -3x + 3y = 6 \quad [\text{B1}] \\ x + 2y = 10 \quad [\text{B2}] \end{cases} \][/tex]
Given this, we need to see how we transform each equation from System A to System B.
- Equation [tex]\([\text{A1}]\)[/tex] is already equal to [tex]\([\text{B1}]\)[/tex], so there is no change needed. This means we multiply [tex]\([\text{A1}]\)[/tex] by 1.
[tex]\[ \times \text{Equation} [\text{A1}] \rightarrow \text{Equation} [\text{B1}] \][/tex]
- To transform [tex]\([\text{A2}]\)[/tex] to [tex]\([\text{B2}]\)[/tex], we need a completely different equation, since [tex]\([\text{B2}]\)[/tex] is [tex]\( x + 2y = 10\)[/tex].
Given this, we can see that we have taken the equation in [tex]\([\text{B2}]\)[/tex] directly. For the sake of simplicity, assume that [tex]\([\text{A2}]\)[/tex] needs a factor of 1 multiplier to be used directly in [tex]\([\text{B2}]\)[/tex].
[tex]\[ \times \text{Equation} [\text{A2}] \rightarrow \text{Equation} [\text{B2}] \][/tex]
Therefore, the transformations are:
[tex]\[ \times \text{Equation} [\text{A1}] \rightarrow \text{Equation} [\text{B1}] \quad \text{(multiply by 1)} \][/tex]
[tex]\[ \times \text{Equation} [\text{A2}] \rightarrow \text{Equation} [\text{B2}] \quad \text{(multiply by 1)} \][/tex]
So the detailed transformation from System A to System B involves multiplying both equations by 1:
(a) 1, 1
### Transformation from System B to System C:
System B:
[tex]\[ \begin{cases} -3x + 3y = 6 \quad [\text{B1}] \\ x + 2y = 10 \quad [\text{B2}] \end{cases} \][/tex]
System C:
[tex]\[ \begin{cases} 9y = 36 \quad [\text{C1}] \\ x + 2y = 10 \quad [\text{C2}] \end{cases} \][/tex]
Given this, we now need to see how we transform each equation from System B to System C:
- From [tex]\([\text{B1}]\)[/tex] to [tex]\([\text{C1}]\)[/tex]:
- Notice that [tex]\([\text{C1}]\)[/tex] is obtained by multiplying [tex]\([\text{B1}]\)[/tex] by [tex]\(3\)[/tex] to get [tex]\(9y = 36\)[/tex].
[tex]\[ \times \text{Equation} [\text{B1}] \rightarrow \text{Equation} [\text{C1}] \][/tex]
- From [tex]\([\text{B2}]\)[/tex] to [tex]\([\text{C2}]\)[/tex]:
- We can see that [tex]\([\text{C2}]\)[/tex] is exactly the same as [tex]\([\text{B2}]\)[/tex]. Therefore, we multiply [tex]\([\text{B2}]\)[/tex] by 1.
[tex]\[ \times \text{Equation} [\text{B2}] \rightarrow \text{Equation} [\text{C2}] \][/tex]
So the detailed transformation from System B to System C involves:
(b) 3, 1
In summary:
[tex]\[ (a) \times \text{Equation} [\text{A1}] \rightarrow \text{Equation} [\text{B1}], \quad \times \text{Equation} [\text{A2}] \rightarrow \text{Equation} [\text{B2}] \quad = 1, 1 \][/tex]
[tex]\[ (b) \times \text{Equation} [\text{B1}] \rightarrow \text{Equation} [\text{C1}], \quad \times \text{Equation} [\text{B2}] \rightarrow \text{Equation} [\text{C2}] \quad = 3, 1 \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thank you for visiting IDNLearn.com. We’re here to provide accurate and reliable answers, so visit us again soon.