IDNLearn.com provides a user-friendly platform for finding answers to your questions. Get accurate and comprehensive answers from our network of experienced professionals.
Sagot :
To solve the integral [tex]\(\int_2^{+\infty} \frac{k}{x^2} \, dx\)[/tex], let's go through the steps methodically.
1. Set up the integral:
[tex]\[ \int_2^{+\infty} \frac{k}{x^2} \, dx \][/tex]
2. Notice that [tex]\(k\)[/tex] is a constant and can be factored out of the integral:
[tex]\[ k \int_2^{+\infty} \frac{1}{x^2} \, dx \][/tex]
3. Integrate the function [tex]\( \frac{1}{x^2} \)[/tex]:
Recall the formula for the integral of [tex]\(x^{-n}\)[/tex]:
[tex]\[ \int x^{-n} \, dx = \frac{x^{-n + 1}}{-n + 1} + C \][/tex]
In our case, the integrand is [tex]\(x^{-2}\)[/tex]. So:
[tex]\[ \int x^{-2} \, dx = \int \frac{1}{x^2} \, dx = \int x^{-2} \, dx = \frac{x^{-2 + 1}}{-2 + 1} = \frac{x^{-1}}{-1} = -\frac{1}{x} \][/tex]
4. Evaluate the definite integral:
The indefinite integral we found is:
[tex]\[ -\frac{1}{x} \][/tex]
We need to evaluate this from [tex]\(x = 2\)[/tex] to [tex]\( x = \infty\)[/tex]. Therefore, the definite integral becomes:
[tex]\[ \left[ -\frac{1}{x} \right]_2^{+\infty} \][/tex]
5. Apply the limits of integration:
First, evaluate at the upper limit, [tex]\(\infty\)[/tex]:
[tex]\[ \lim_{x \to \infty} -\frac{1}{x} = 0 \][/tex]
Then, evaluate at the lower limit, 2:
[tex]\[ -\frac{1}{2} \][/tex]
So, the definite integral is:
[tex]\[ 0 - \left( -\frac{1}{2} \right) = 0 + \frac{1}{2} = \frac{1}{2} \][/tex]
6. Multiply by the constant [tex]\( k \)[/tex]:
[tex]\[ k \cdot \frac{1}{2} = \frac{k}{2} \][/tex]
Therefore, the final answer is:
[tex]\[ \int_2^{+\infty} \frac{k}{x^2} \, dx = \frac{k}{2} \][/tex]
1. Set up the integral:
[tex]\[ \int_2^{+\infty} \frac{k}{x^2} \, dx \][/tex]
2. Notice that [tex]\(k\)[/tex] is a constant and can be factored out of the integral:
[tex]\[ k \int_2^{+\infty} \frac{1}{x^2} \, dx \][/tex]
3. Integrate the function [tex]\( \frac{1}{x^2} \)[/tex]:
Recall the formula for the integral of [tex]\(x^{-n}\)[/tex]:
[tex]\[ \int x^{-n} \, dx = \frac{x^{-n + 1}}{-n + 1} + C \][/tex]
In our case, the integrand is [tex]\(x^{-2}\)[/tex]. So:
[tex]\[ \int x^{-2} \, dx = \int \frac{1}{x^2} \, dx = \int x^{-2} \, dx = \frac{x^{-2 + 1}}{-2 + 1} = \frac{x^{-1}}{-1} = -\frac{1}{x} \][/tex]
4. Evaluate the definite integral:
The indefinite integral we found is:
[tex]\[ -\frac{1}{x} \][/tex]
We need to evaluate this from [tex]\(x = 2\)[/tex] to [tex]\( x = \infty\)[/tex]. Therefore, the definite integral becomes:
[tex]\[ \left[ -\frac{1}{x} \right]_2^{+\infty} \][/tex]
5. Apply the limits of integration:
First, evaluate at the upper limit, [tex]\(\infty\)[/tex]:
[tex]\[ \lim_{x \to \infty} -\frac{1}{x} = 0 \][/tex]
Then, evaluate at the lower limit, 2:
[tex]\[ -\frac{1}{2} \][/tex]
So, the definite integral is:
[tex]\[ 0 - \left( -\frac{1}{2} \right) = 0 + \frac{1}{2} = \frac{1}{2} \][/tex]
6. Multiply by the constant [tex]\( k \)[/tex]:
[tex]\[ k \cdot \frac{1}{2} = \frac{k}{2} \][/tex]
Therefore, the final answer is:
[tex]\[ \int_2^{+\infty} \frac{k}{x^2} \, dx = \frac{k}{2} \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com is committed to your satisfaction. Thank you for visiting, and see you next time for more helpful answers.