Find the best solutions to your problems with the help of IDNLearn.com. Join our community to receive prompt, thorough responses from knowledgeable experts.

Check all of the infinite geometric series that diverge.

A. [tex]27+9+3+1+\ldots[/tex]

B. [tex]1+\frac{4}{3}+\frac{16}{9}+\frac{64}{27}+\ldots[/tex]

C. [tex]2.2+0.22+0.022+\ldots[/tex]

D. [tex]\sum_{n=1}^{\infty}\left(\frac{1}{64}\right) \cdot(2)^{n-1}[/tex]


Sagot :

Sure! Let's analyze each geometric series to determine if it diverges.

### Series 1: [tex]\( 27 + 9 + 3 + 1 + \ldots \)[/tex]

This can be rewritten as:
[tex]\[ 27 + 27 \left(\frac{1}{3}\right) + 27 \left(\frac{1}{3}\right)^2 + 27 \left(\frac{1}{3}\right)^3 + \ldots \][/tex]

The common ratio [tex]\( r \)[/tex] is:
[tex]\[ r = \frac{9}{27} = \frac{1}{3} \][/tex]

Since [tex]\( |r| = \frac{1}{3} < 1 \)[/tex], this series converges.

### Series 2: [tex]\( 1 + \frac{4}{3} + \frac{16}{9} + \frac{64}{27} + \ldots \)[/tex]

This can be rewritten as:
[tex]\[ 1 + \left(\frac{4}{3}\right) + \left(\frac{4}{3}\right)^2 + \left(\frac{4}{3}\right)^3 + \ldots \][/tex]

The common ratio [tex]\( r \)[/tex] is:
[tex]\[ r = \frac{4}{3} \][/tex]

Since [tex]\( |r| = \frac{4}{3} > 1 \)[/tex], this series diverges.

### Series 3: [tex]\( 2.2 + 0.22 + 0.022 + \ldots \)[/tex]

This can be rewritten as:
[tex]\[ 2.2 + 2.2 \left(\frac{1}{10}\right) + 2.2 \left(\frac{1}{10}\right)^2 + \ldots \][/tex]

The common ratio [tex]\( r \)[/tex] is:
[tex]\[ r = \frac{0.22}{2.2} = \frac{1}{10} \][/tex]

Since [tex]\( |r| = \frac{1}{10} < 1 \)[/tex], this series converges.

### Series 4: [tex]\( \sum_{n=1}^{\infty}\left(\frac{1}{64}\right) \cdot(2)^{n-1} \)[/tex]

This can be rewritten as:
[tex]\[ \frac{1}{64} + \frac{1}{64} \cdot 2 + \frac{1}{64} \cdot 2^2 + \frac{1}{64} \cdot 2^3 + \ldots \][/tex]

The common ratio [tex]\( r \)[/tex] is:
[tex]\[ r = 2 \][/tex]

Since [tex]\( |r| = 2 > 1 \)[/tex], this series diverges.

### Conclusion
The geometric series that diverge are:
[tex]\[ 1 + \frac{4}{3} + \frac{16}{9} + \frac{64}{27} + \ldots \][/tex]
[tex]\[ \sum_{n=1}^{\infty}\left(\frac{1}{64}\right) \cdot(2)^{n-1} \][/tex]

Thus, we have determined that the second and fourth series diverge.