IDNLearn.com offers a comprehensive platform for finding and sharing knowledge. Find in-depth and accurate answers to all your questions from our knowledgeable and dedicated community members.
Sagot :
Sure! Let's analyze each geometric series to determine if it diverges.
### Series 1: [tex]\( 27 + 9 + 3 + 1 + \ldots \)[/tex]
This can be rewritten as:
[tex]\[ 27 + 27 \left(\frac{1}{3}\right) + 27 \left(\frac{1}{3}\right)^2 + 27 \left(\frac{1}{3}\right)^3 + \ldots \][/tex]
The common ratio [tex]\( r \)[/tex] is:
[tex]\[ r = \frac{9}{27} = \frac{1}{3} \][/tex]
Since [tex]\( |r| = \frac{1}{3} < 1 \)[/tex], this series converges.
### Series 2: [tex]\( 1 + \frac{4}{3} + \frac{16}{9} + \frac{64}{27} + \ldots \)[/tex]
This can be rewritten as:
[tex]\[ 1 + \left(\frac{4}{3}\right) + \left(\frac{4}{3}\right)^2 + \left(\frac{4}{3}\right)^3 + \ldots \][/tex]
The common ratio [tex]\( r \)[/tex] is:
[tex]\[ r = \frac{4}{3} \][/tex]
Since [tex]\( |r| = \frac{4}{3} > 1 \)[/tex], this series diverges.
### Series 3: [tex]\( 2.2 + 0.22 + 0.022 + \ldots \)[/tex]
This can be rewritten as:
[tex]\[ 2.2 + 2.2 \left(\frac{1}{10}\right) + 2.2 \left(\frac{1}{10}\right)^2 + \ldots \][/tex]
The common ratio [tex]\( r \)[/tex] is:
[tex]\[ r = \frac{0.22}{2.2} = \frac{1}{10} \][/tex]
Since [tex]\( |r| = \frac{1}{10} < 1 \)[/tex], this series converges.
### Series 4: [tex]\( \sum_{n=1}^{\infty}\left(\frac{1}{64}\right) \cdot(2)^{n-1} \)[/tex]
This can be rewritten as:
[tex]\[ \frac{1}{64} + \frac{1}{64} \cdot 2 + \frac{1}{64} \cdot 2^2 + \frac{1}{64} \cdot 2^3 + \ldots \][/tex]
The common ratio [tex]\( r \)[/tex] is:
[tex]\[ r = 2 \][/tex]
Since [tex]\( |r| = 2 > 1 \)[/tex], this series diverges.
### Conclusion
The geometric series that diverge are:
[tex]\[ 1 + \frac{4}{3} + \frac{16}{9} + \frac{64}{27} + \ldots \][/tex]
[tex]\[ \sum_{n=1}^{\infty}\left(\frac{1}{64}\right) \cdot(2)^{n-1} \][/tex]
Thus, we have determined that the second and fourth series diverge.
### Series 1: [tex]\( 27 + 9 + 3 + 1 + \ldots \)[/tex]
This can be rewritten as:
[tex]\[ 27 + 27 \left(\frac{1}{3}\right) + 27 \left(\frac{1}{3}\right)^2 + 27 \left(\frac{1}{3}\right)^3 + \ldots \][/tex]
The common ratio [tex]\( r \)[/tex] is:
[tex]\[ r = \frac{9}{27} = \frac{1}{3} \][/tex]
Since [tex]\( |r| = \frac{1}{3} < 1 \)[/tex], this series converges.
### Series 2: [tex]\( 1 + \frac{4}{3} + \frac{16}{9} + \frac{64}{27} + \ldots \)[/tex]
This can be rewritten as:
[tex]\[ 1 + \left(\frac{4}{3}\right) + \left(\frac{4}{3}\right)^2 + \left(\frac{4}{3}\right)^3 + \ldots \][/tex]
The common ratio [tex]\( r \)[/tex] is:
[tex]\[ r = \frac{4}{3} \][/tex]
Since [tex]\( |r| = \frac{4}{3} > 1 \)[/tex], this series diverges.
### Series 3: [tex]\( 2.2 + 0.22 + 0.022 + \ldots \)[/tex]
This can be rewritten as:
[tex]\[ 2.2 + 2.2 \left(\frac{1}{10}\right) + 2.2 \left(\frac{1}{10}\right)^2 + \ldots \][/tex]
The common ratio [tex]\( r \)[/tex] is:
[tex]\[ r = \frac{0.22}{2.2} = \frac{1}{10} \][/tex]
Since [tex]\( |r| = \frac{1}{10} < 1 \)[/tex], this series converges.
### Series 4: [tex]\( \sum_{n=1}^{\infty}\left(\frac{1}{64}\right) \cdot(2)^{n-1} \)[/tex]
This can be rewritten as:
[tex]\[ \frac{1}{64} + \frac{1}{64} \cdot 2 + \frac{1}{64} \cdot 2^2 + \frac{1}{64} \cdot 2^3 + \ldots \][/tex]
The common ratio [tex]\( r \)[/tex] is:
[tex]\[ r = 2 \][/tex]
Since [tex]\( |r| = 2 > 1 \)[/tex], this series diverges.
### Conclusion
The geometric series that diverge are:
[tex]\[ 1 + \frac{4}{3} + \frac{16}{9} + \frac{64}{27} + \ldots \][/tex]
[tex]\[ \sum_{n=1}^{\infty}\left(\frac{1}{64}\right) \cdot(2)^{n-1} \][/tex]
Thus, we have determined that the second and fourth series diverge.
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.