IDNLearn.com provides a collaborative environment for finding accurate answers. Discover thorough and trustworthy answers from our community of knowledgeable professionals, tailored to meet your specific needs.
Sagot :
To solve this problem, we need to find the total amount of money after 30 days by evaluating and multiplying the sums of three given geometric series:
[tex]\[ \begin{array}{r} \sum_{n=1}^{30} (1) \cdot (2)^{n-1} \\ \times \quad \sum_{n=1}^{29} (1) \cdot (2)^{n-1} \\ \times \quad \sum_{n=1}^{30} (1) \cdot \left(\frac{1}{2}\right)^{n-1} \end{array} \][/tex]
First, we’ll evaluate each series separately.
### First Geometric Series
The first series is:
[tex]\[ \sum_{n=1}^{30} 2^{n-1} \][/tex]
This is a geometric series where the first term [tex]\( a = 1 \)[/tex] (since [tex]\( 2^{0} = 1 \)[/tex]) and the common ratio [tex]\( r = 2 \)[/tex]. The sum [tex]\( S \)[/tex] of the first [tex]\( k \)[/tex] terms of a geometric series can be found using the formula:
[tex]\[ S = a \frac{r^k - 1}{r - 1} \][/tex]
For our series:
- [tex]\( a = 1 \)[/tex]
- [tex]\( r = 2 \)[/tex]
- [tex]\( k = 30 \)[/tex]
Substituting these values, we get:
[tex]\[ S_1 = 1 \frac{2^{30} - 1}{2 - 1} = 2^{30} - 1 = 1073741823 \][/tex]
### Second Geometric Series
The second series is:
[tex]\[ \sum_{n=1}^{29} 2^{n-1} \][/tex]
Similar to the first series, where:
- [tex]\( a = 1 \)[/tex]
- [tex]\( r = 2 \)[/tex]
- [tex]\( k = 29 \)[/tex]
Using the geometric series sum formula again, we get:
[tex]\[ S_2 = 1 \frac{2^{29} - 1}{2 - 1} = 2^{29} - 1 = 536870911 \][/tex]
### Third Geometric Series
The third series is:
[tex]\[ \sum_{n=1}^{30} \left(\frac{1}{2}\right)^{n-1} \][/tex]
For this series:
- [tex]\( a = 1 \)[/tex] (since [tex]\( \left(\frac{1}{2}\right)^0 = 1 \)[/tex])
- [tex]\( r = \frac{1}{2} \)[/tex]
- [tex]\( k = 30 \)[/tex]
Using the geometric series sum formula, we get:
[tex]\[ S_3 = 1 \frac{\left(\frac{1}{2}\right)^{30} - 1}{\left(\frac{1}{2}\right) - 1} = \frac{1 - \left(\frac{1}{2}\right)^{30}}{1 - \frac{1}{2}} = 2 \left(1 - \left(\frac{1}{2}\right)^{30}\right) \][/tex]
Since [tex]\( \left(\frac{1}{2}\right)^{30} \)[/tex] is a very small number, approximating it to near zero for practical purposes, we get:
[tex]\[ S_3 \approx 2 \][/tex]
Combining these results:
[tex]\[ S_1 = 1073741823 \][/tex]
[tex]\[ S_2 = 536870911 \][/tex]
[tex]\[ S_3 \approx 2 \][/tex]
### Product of the Sums
The total amount of money after 30 days is the product of these sums:
[tex]\[ \text{Total Money} = S_1 \times S_2 \times S_3 = 1073741823 \times 536870911 \times 2 \][/tex]
### Calculating the Total Money
From the provided result, we know:
[tex]\[ \text{Total Money} = 1.1529215003118797 \times 10^{18} \][/tex]
Thus, after 30 days, the total amount of money is:
[tex]\[ \boxed{1.1529215003118797 \times 10^{18}} \][/tex]
[tex]\[ \begin{array}{r} \sum_{n=1}^{30} (1) \cdot (2)^{n-1} \\ \times \quad \sum_{n=1}^{29} (1) \cdot (2)^{n-1} \\ \times \quad \sum_{n=1}^{30} (1) \cdot \left(\frac{1}{2}\right)^{n-1} \end{array} \][/tex]
First, we’ll evaluate each series separately.
### First Geometric Series
The first series is:
[tex]\[ \sum_{n=1}^{30} 2^{n-1} \][/tex]
This is a geometric series where the first term [tex]\( a = 1 \)[/tex] (since [tex]\( 2^{0} = 1 \)[/tex]) and the common ratio [tex]\( r = 2 \)[/tex]. The sum [tex]\( S \)[/tex] of the first [tex]\( k \)[/tex] terms of a geometric series can be found using the formula:
[tex]\[ S = a \frac{r^k - 1}{r - 1} \][/tex]
For our series:
- [tex]\( a = 1 \)[/tex]
- [tex]\( r = 2 \)[/tex]
- [tex]\( k = 30 \)[/tex]
Substituting these values, we get:
[tex]\[ S_1 = 1 \frac{2^{30} - 1}{2 - 1} = 2^{30} - 1 = 1073741823 \][/tex]
### Second Geometric Series
The second series is:
[tex]\[ \sum_{n=1}^{29} 2^{n-1} \][/tex]
Similar to the first series, where:
- [tex]\( a = 1 \)[/tex]
- [tex]\( r = 2 \)[/tex]
- [tex]\( k = 29 \)[/tex]
Using the geometric series sum formula again, we get:
[tex]\[ S_2 = 1 \frac{2^{29} - 1}{2 - 1} = 2^{29} - 1 = 536870911 \][/tex]
### Third Geometric Series
The third series is:
[tex]\[ \sum_{n=1}^{30} \left(\frac{1}{2}\right)^{n-1} \][/tex]
For this series:
- [tex]\( a = 1 \)[/tex] (since [tex]\( \left(\frac{1}{2}\right)^0 = 1 \)[/tex])
- [tex]\( r = \frac{1}{2} \)[/tex]
- [tex]\( k = 30 \)[/tex]
Using the geometric series sum formula, we get:
[tex]\[ S_3 = 1 \frac{\left(\frac{1}{2}\right)^{30} - 1}{\left(\frac{1}{2}\right) - 1} = \frac{1 - \left(\frac{1}{2}\right)^{30}}{1 - \frac{1}{2}} = 2 \left(1 - \left(\frac{1}{2}\right)^{30}\right) \][/tex]
Since [tex]\( \left(\frac{1}{2}\right)^{30} \)[/tex] is a very small number, approximating it to near zero for practical purposes, we get:
[tex]\[ S_3 \approx 2 \][/tex]
Combining these results:
[tex]\[ S_1 = 1073741823 \][/tex]
[tex]\[ S_2 = 536870911 \][/tex]
[tex]\[ S_3 \approx 2 \][/tex]
### Product of the Sums
The total amount of money after 30 days is the product of these sums:
[tex]\[ \text{Total Money} = S_1 \times S_2 \times S_3 = 1073741823 \times 536870911 \times 2 \][/tex]
### Calculating the Total Money
From the provided result, we know:
[tex]\[ \text{Total Money} = 1.1529215003118797 \times 10^{18} \][/tex]
Thus, after 30 days, the total amount of money is:
[tex]\[ \boxed{1.1529215003118797 \times 10^{18}} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Find the answers you need at IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.