IDNLearn.com connects you with a community of knowledgeable individuals ready to help. Ask any question and receive comprehensive, well-informed responses from our dedicated team of experts.
Sagot :
To solve the given linear programming problem using the simplex method, we need to convert it into its standard form, which involves the following steps:
1. Formulate the Objective Function and Constraints:
[tex]\[ \begin{array}{ll} \text{Maximize} & z = 6x_1 + 3x_2 + x_3 \\ \text{subject to} & 5x_1 + 5x_2 + x_3 \leq 25 \\ & x_1 + 3x_2 + 3x_3 \leq 18 \\ & x_1 \geq 0, x_2 \geq 0, x_3 \geq 0 \end{array} \][/tex]
2. Introduce Slack Variables:
To convert the inequalities into equalities, we introduce slack variables [tex]\( s_1 \)[/tex] and [tex]\( s_2 \)[/tex]:
[tex]\[ \begin{array}{ll} 5x_1 + 5x_2 + x_3 + s_1 = 25 \\ x_1 + 3x_2 + 3x_3 + s_2 = 18 \\ s_1 \geq 0, s_2 \geq 0 \end{array} \][/tex]
3. Set Up the Initial Simplex Tableau:
The initial simplex tableau is:
[tex]\[ \begin{array}{c|cccccc|c} \text{Basic} & x_1 & x_2 & x_3 & s_1 & s_2 & \text{RHS} & \\ \hline s_1 & 5 & 5 & 1 & 1 & 0 & 25 \\ s_2 & 1 & 3 & 3 & 0 & 1 & 18 \\ \hline \text{Z} & -6 & -3 & -1 & 0 & 0 & 0 \\ \end{array} \][/tex]
4. Perform the Simplex Algorithm:
- Identify the entering variable (most negative coefficient in the Z row):
- Here, [tex]\( -6 \)[/tex] is the most negative, so [tex]\( x_1 \)[/tex] enters the basis.
- Determine the leaving variable using the minimum ratio test:
- For [tex]\( s_1 \)[/tex]: [tex]\( \frac{25}{5} = 5 \)[/tex]
- For [tex]\( s_2 \)[/tex]: [tex]\( \frac{18}{1} = 18 \)[/tex]
- Since [tex]\( 5 \)[/tex] is smaller, [tex]\( s_1 \)[/tex] leaves the basis.
- Perform the pivot operation to update the tableau. This involves making [tex]\( x_1 \)[/tex]’s entry in the pivot row equal to 1 and other entries in its column to 0.
After performing all necessary pivot operations and iterations (not shown in full detail here for brevity), we reach the optimal tableau:
5. Optimal Solution:
From the final tableau, we find:
[tex]\[ \begin{array}{c|cccccc|c} \text{Basic} & x_1 & x_2 & x_3 & s_1 & s_2 & \text{RHS} \\ \hline x_1 & 1 & 0 & 0 & 0.2 & -1 & 5 \\ s_2 & 0 & 1 & 0 & -0.2 & 0.2 & 3 \\ \hline \text{Z} & 0 & 0 & 0 & 1.2 & -6 & 30 \\ \end{array} \][/tex]
Therefore, the optimal solution is:
[tex]\[ \begin{cases} x_1 = 5 \\ x_2 = 0 \\ x_3 = 0 \\ s_1 = 0 \\ s_2 = 3 \\ \end{cases} \][/tex]
The maximum value of [tex]\( z \)[/tex] is [tex]\( 30 \)[/tex].
So the final choice is:
A. The maximum is [tex]\( 30 \)[/tex] when [tex]\( x_1 = 5 \)[/tex], [tex]\( x_2 = 0 \)[/tex], [tex]\( x_3 = 0 \)[/tex], [tex]\( s_1 = 0 \)[/tex], and [tex]\( s_2 = 3 \)[/tex].
1. Formulate the Objective Function and Constraints:
[tex]\[ \begin{array}{ll} \text{Maximize} & z = 6x_1 + 3x_2 + x_3 \\ \text{subject to} & 5x_1 + 5x_2 + x_3 \leq 25 \\ & x_1 + 3x_2 + 3x_3 \leq 18 \\ & x_1 \geq 0, x_2 \geq 0, x_3 \geq 0 \end{array} \][/tex]
2. Introduce Slack Variables:
To convert the inequalities into equalities, we introduce slack variables [tex]\( s_1 \)[/tex] and [tex]\( s_2 \)[/tex]:
[tex]\[ \begin{array}{ll} 5x_1 + 5x_2 + x_3 + s_1 = 25 \\ x_1 + 3x_2 + 3x_3 + s_2 = 18 \\ s_1 \geq 0, s_2 \geq 0 \end{array} \][/tex]
3. Set Up the Initial Simplex Tableau:
The initial simplex tableau is:
[tex]\[ \begin{array}{c|cccccc|c} \text{Basic} & x_1 & x_2 & x_3 & s_1 & s_2 & \text{RHS} & \\ \hline s_1 & 5 & 5 & 1 & 1 & 0 & 25 \\ s_2 & 1 & 3 & 3 & 0 & 1 & 18 \\ \hline \text{Z} & -6 & -3 & -1 & 0 & 0 & 0 \\ \end{array} \][/tex]
4. Perform the Simplex Algorithm:
- Identify the entering variable (most negative coefficient in the Z row):
- Here, [tex]\( -6 \)[/tex] is the most negative, so [tex]\( x_1 \)[/tex] enters the basis.
- Determine the leaving variable using the minimum ratio test:
- For [tex]\( s_1 \)[/tex]: [tex]\( \frac{25}{5} = 5 \)[/tex]
- For [tex]\( s_2 \)[/tex]: [tex]\( \frac{18}{1} = 18 \)[/tex]
- Since [tex]\( 5 \)[/tex] is smaller, [tex]\( s_1 \)[/tex] leaves the basis.
- Perform the pivot operation to update the tableau. This involves making [tex]\( x_1 \)[/tex]’s entry in the pivot row equal to 1 and other entries in its column to 0.
After performing all necessary pivot operations and iterations (not shown in full detail here for brevity), we reach the optimal tableau:
5. Optimal Solution:
From the final tableau, we find:
[tex]\[ \begin{array}{c|cccccc|c} \text{Basic} & x_1 & x_2 & x_3 & s_1 & s_2 & \text{RHS} \\ \hline x_1 & 1 & 0 & 0 & 0.2 & -1 & 5 \\ s_2 & 0 & 1 & 0 & -0.2 & 0.2 & 3 \\ \hline \text{Z} & 0 & 0 & 0 & 1.2 & -6 & 30 \\ \end{array} \][/tex]
Therefore, the optimal solution is:
[tex]\[ \begin{cases} x_1 = 5 \\ x_2 = 0 \\ x_3 = 0 \\ s_1 = 0 \\ s_2 = 3 \\ \end{cases} \][/tex]
The maximum value of [tex]\( z \)[/tex] is [tex]\( 30 \)[/tex].
So the final choice is:
A. The maximum is [tex]\( 30 \)[/tex] when [tex]\( x_1 = 5 \)[/tex], [tex]\( x_2 = 0 \)[/tex], [tex]\( x_3 = 0 \)[/tex], [tex]\( s_1 = 0 \)[/tex], and [tex]\( s_2 = 3 \)[/tex].
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Your questions deserve reliable answers. Thanks for visiting IDNLearn.com, and see you again soon for more helpful information.