Get expert insights and reliable answers to your questions on IDNLearn.com. Ask your questions and receive prompt, detailed answers from our experienced and knowledgeable community members.
Sagot :
Let's analyze the problem step-by-step to find out for which temperature the model most accurately predicts the time spent cooling.
### Step 1: Understanding the model
The model given is [tex]\( f(t) = 349.2 \times (0.98)^t \)[/tex] where:
- [tex]\( f(t) \)[/tex] represents the temperature of the oven in degrees Fahrenheit.
- [tex]\( t \)[/tex] represents the time in minutes that the oven has been cooling.
### Step 2: Given data
We have a table of times and corresponding actual oven temperatures:
| Time (minutes) | Oven temperature (°F) |
|----------------|------------------------|
| 5 | 315 |
| 10 | 285 |
| 15 | 260 |
| 20 | 235 |
| 25 | 210 |
### Step 3: Calculating predicted temperatures using the model
Using the function [tex]\( f(t) = 349.2 \times (0.98)^t \)[/tex], we calculate:
- For [tex]\( t = 5 \)[/tex]:
[tex]\( f(5) = 349.2 \times (0.98)^5 \approx 315.65 \)[/tex]
- For [tex]\( t = 10 \)[/tex]:
[tex]\( f(10) = 349.2 \times (0.98)^{10} \approx 285.32 \)[/tex]
- For [tex]\( t = 15 \)[/tex]:
[tex]\( f(15) = 349.2 \times (0.98)^{15} \approx 257.91 \)[/tex]
- For [tex]\( t = 20 \)[/tex]:
[tex]\( f(20) = 349.2 \times (0.98)^{20} \approx 233.13 \)[/tex]
- For [tex]\( t = 25 \)[/tex]:
[tex]\( f(25) = 349.2 \times (0.98)^{25} \approx 210.73 \)[/tex]
### Step 4: Calculating the absolute errors
To find out how accurately the model predicts the time spent cooling, we compare the predicted temperatures with the actual temperatures and calculate the absolute errors:
- For [tex]\( t = 5 \)[/tex]:
Absolute error [tex]\( = |315.65 - 315| = 0.65 \)[/tex]
- For [tex]\( t = 10 \)[/tex]:
Absolute error [tex]\( = |285.32 - 285| = 0.32 \)[/tex]
- For [tex]\( t = 15 \)[/tex]:
Absolute error [tex]\( = |257.91 - 260| = 2.09 \)[/tex]
- For [tex]\( t = 20 \)[/tex]:
Absolute error [tex]\( = |233.13 - 235| = 1.87 \)[/tex]
- For [tex]\( t = 25 \)[/tex]:
Absolute error [tex]\( = |210.73 - 210| = 0.73 \)[/tex]
### Step 5: Finding the smallest error
The smallest absolute error indicates the time at which the model most accurately predicts the temperature:
| Time (minutes) | Absolute error (°F) |
|----------------|----------------------|
| 5 | 0.65 |
| 10 | 0.32 |
| 15 | 2.09 |
| 20 | 1.87 |
| 25 | 0.73 |
The smallest error is 0.32, which corresponds to [tex]\( t = 10 \)[/tex] minutes.
### Conclusion
The temperature for which the model most accurately predicts the cooling time is at [tex]\( t = 10 \)[/tex] minutes. Therefore, the most accurate predicted temperature is [tex]\( 285 \)[/tex] degrees Fahrenheit.
### Step 1: Understanding the model
The model given is [tex]\( f(t) = 349.2 \times (0.98)^t \)[/tex] where:
- [tex]\( f(t) \)[/tex] represents the temperature of the oven in degrees Fahrenheit.
- [tex]\( t \)[/tex] represents the time in minutes that the oven has been cooling.
### Step 2: Given data
We have a table of times and corresponding actual oven temperatures:
| Time (minutes) | Oven temperature (°F) |
|----------------|------------------------|
| 5 | 315 |
| 10 | 285 |
| 15 | 260 |
| 20 | 235 |
| 25 | 210 |
### Step 3: Calculating predicted temperatures using the model
Using the function [tex]\( f(t) = 349.2 \times (0.98)^t \)[/tex], we calculate:
- For [tex]\( t = 5 \)[/tex]:
[tex]\( f(5) = 349.2 \times (0.98)^5 \approx 315.65 \)[/tex]
- For [tex]\( t = 10 \)[/tex]:
[tex]\( f(10) = 349.2 \times (0.98)^{10} \approx 285.32 \)[/tex]
- For [tex]\( t = 15 \)[/tex]:
[tex]\( f(15) = 349.2 \times (0.98)^{15} \approx 257.91 \)[/tex]
- For [tex]\( t = 20 \)[/tex]:
[tex]\( f(20) = 349.2 \times (0.98)^{20} \approx 233.13 \)[/tex]
- For [tex]\( t = 25 \)[/tex]:
[tex]\( f(25) = 349.2 \times (0.98)^{25} \approx 210.73 \)[/tex]
### Step 4: Calculating the absolute errors
To find out how accurately the model predicts the time spent cooling, we compare the predicted temperatures with the actual temperatures and calculate the absolute errors:
- For [tex]\( t = 5 \)[/tex]:
Absolute error [tex]\( = |315.65 - 315| = 0.65 \)[/tex]
- For [tex]\( t = 10 \)[/tex]:
Absolute error [tex]\( = |285.32 - 285| = 0.32 \)[/tex]
- For [tex]\( t = 15 \)[/tex]:
Absolute error [tex]\( = |257.91 - 260| = 2.09 \)[/tex]
- For [tex]\( t = 20 \)[/tex]:
Absolute error [tex]\( = |233.13 - 235| = 1.87 \)[/tex]
- For [tex]\( t = 25 \)[/tex]:
Absolute error [tex]\( = |210.73 - 210| = 0.73 \)[/tex]
### Step 5: Finding the smallest error
The smallest absolute error indicates the time at which the model most accurately predicts the temperature:
| Time (minutes) | Absolute error (°F) |
|----------------|----------------------|
| 5 | 0.65 |
| 10 | 0.32 |
| 15 | 2.09 |
| 20 | 1.87 |
| 25 | 0.73 |
The smallest error is 0.32, which corresponds to [tex]\( t = 10 \)[/tex] minutes.
### Conclusion
The temperature for which the model most accurately predicts the cooling time is at [tex]\( t = 10 \)[/tex] minutes. Therefore, the most accurate predicted temperature is [tex]\( 285 \)[/tex] degrees Fahrenheit.
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Your questions find answers at IDNLearn.com. Thanks for visiting, and come back for more accurate and reliable solutions.