Expand your knowledge base with the help of IDNLearn.com's extensive answer archive. Ask any question and receive timely, accurate responses from our dedicated community of experts.
Sagot :
Let's solve the given equation:
[tex]\[ 2 \tan^{-1}(x) + \tan^{-1}(x + 1) = \frac{\pi}{2} \][/tex]
To start, let's denote [tex]\(\theta = \tan^{-1}(x)\)[/tex]. Therefore, [tex]\(x = \tan(\theta)\)[/tex]. This substitution will help us manipulate the equation more easily.
### Step 1: Rewriting the equation
Our equation becomes:
[tex]\[ 2\theta + \tan^{-1}(\tan(\theta) + 1) = \frac{\pi}{2} \][/tex]
### Step 2: Use the identity for arctan addition
Recall the addition formula for arctangents:
[tex]\[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \][/tex]
However, here we cannot directly use that formula, but we'll break it down into simpler steps. Firstly, let's rewrite [tex]\( \tan^{-1}(\tan(\theta) + 1) \)[/tex]:
Let [tex]\(y = \tan^{-1}(x + 1)\)[/tex]. Then, given that [tex]\(\theta = \tan^{-1}(x)\)[/tex], and substituting [tex]\(y\)[/tex],
we have:
[tex]\[ y = \tan^{-1}(\tan(\theta) + 1) \][/tex]
### Step 3: Solve [tex]\(2\theta + y = \frac{\pi}{2}\)[/tex]
We know that [tex]\( y = \frac{\pi}{2} - 2\theta \)[/tex] because substituting [tex]\( y \)[/tex] into our original equation should simplify it:
[tex]\[ 2\theta + y = \frac{\pi}{2} \,\Rightarrow\, y = \frac{\pi}{2} - 2\theta \][/tex]
We now aim to find the relationship between [tex]\(x\)[/tex] and [tex]\(\theta\)[/tex] that satisfies this new equation:
[tex]\[ \tan^{-1}(x + 1) = \frac{\pi}{2} - 2\tan^{-1}(x) \][/tex]
### Step 4: Apply tangent on both sides
[tex]\[ x + 1 = \tan\left( \frac{\pi}{2} - 2\tan^{-1}(x)\right) \][/tex]
Using the identity [tex]\(\tan\left( \frac{\pi}{2}-A \right) = \cot(A)\)[/tex]:
[tex]\[ x + 1 = \cot\left( 2\tan^{-1}(x) \right) \][/tex]
### Step 5: Use double-angle identity for cotangent and arctangent:
Recall:
[tex]\[ \cot(2A) = \frac{1-\tan^2(A)}{2\tan(A)}: \text{where } A = \tan^{-1}(x) \][/tex]
So,
[tex]\[ x + 1 = \frac{1 - \tan^2(\tan^{-1}(x))}{2\tan(\tan^{-1}(x))} \][/tex]
[tex]\[ x + 1 = \frac{1 - x^2}{2x} \][/tex]
### Step 6: Solve the resulting equation
Re-write and arrange terms:
[tex]\[ x + 1 = \frac{1 - x^2}{2x} \][/tex]
Multiply both sides by [tex]\(2x\)[/tex]:
[tex]\[ 2x(x + 1) = 1 - x^2 \][/tex]
[tex]\[ 2x^2 + 2x = 1 - x^2 \][/tex]
[tex]\[ 3x^2 + 2x - 1 = 0 \][/tex]
### Step 7: Solve the quadratic equation
Solve the quadratic equation using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
Here, [tex]\(a = 3\)[/tex], [tex]\(b = 2\)[/tex], and [tex]\(c = -1\)[/tex]:
[tex]\[ x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 3 \cdot (-1)}}{2 \cdot 3} \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{4 + 12}}{6} \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{16}}{6} \][/tex]
[tex]\[ x = \frac{-2 \pm 4}{6} \][/tex]
So,
[tex]\[ x = \frac{2}{6} = \frac{1}{3} \][/tex]
[tex]\[ x = \frac{-6}{6} = -1 \][/tex]
### Conclusions
The solutions to the original equation are:
[tex]\[ x = \frac{1}{3} \, \text{and} \, x = -1 \][/tex]
Hence, the solutions are [tex]\( x = \frac{1}{3} \)[/tex] and [tex]\( x = -1 \)[/tex].
[tex]\[ 2 \tan^{-1}(x) + \tan^{-1}(x + 1) = \frac{\pi}{2} \][/tex]
To start, let's denote [tex]\(\theta = \tan^{-1}(x)\)[/tex]. Therefore, [tex]\(x = \tan(\theta)\)[/tex]. This substitution will help us manipulate the equation more easily.
### Step 1: Rewriting the equation
Our equation becomes:
[tex]\[ 2\theta + \tan^{-1}(\tan(\theta) + 1) = \frac{\pi}{2} \][/tex]
### Step 2: Use the identity for arctan addition
Recall the addition formula for arctangents:
[tex]\[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1} \left( \frac{a + b}{1 - ab} \right) \][/tex]
However, here we cannot directly use that formula, but we'll break it down into simpler steps. Firstly, let's rewrite [tex]\( \tan^{-1}(\tan(\theta) + 1) \)[/tex]:
Let [tex]\(y = \tan^{-1}(x + 1)\)[/tex]. Then, given that [tex]\(\theta = \tan^{-1}(x)\)[/tex], and substituting [tex]\(y\)[/tex],
we have:
[tex]\[ y = \tan^{-1}(\tan(\theta) + 1) \][/tex]
### Step 3: Solve [tex]\(2\theta + y = \frac{\pi}{2}\)[/tex]
We know that [tex]\( y = \frac{\pi}{2} - 2\theta \)[/tex] because substituting [tex]\( y \)[/tex] into our original equation should simplify it:
[tex]\[ 2\theta + y = \frac{\pi}{2} \,\Rightarrow\, y = \frac{\pi}{2} - 2\theta \][/tex]
We now aim to find the relationship between [tex]\(x\)[/tex] and [tex]\(\theta\)[/tex] that satisfies this new equation:
[tex]\[ \tan^{-1}(x + 1) = \frac{\pi}{2} - 2\tan^{-1}(x) \][/tex]
### Step 4: Apply tangent on both sides
[tex]\[ x + 1 = \tan\left( \frac{\pi}{2} - 2\tan^{-1}(x)\right) \][/tex]
Using the identity [tex]\(\tan\left( \frac{\pi}{2}-A \right) = \cot(A)\)[/tex]:
[tex]\[ x + 1 = \cot\left( 2\tan^{-1}(x) \right) \][/tex]
### Step 5: Use double-angle identity for cotangent and arctangent:
Recall:
[tex]\[ \cot(2A) = \frac{1-\tan^2(A)}{2\tan(A)}: \text{where } A = \tan^{-1}(x) \][/tex]
So,
[tex]\[ x + 1 = \frac{1 - \tan^2(\tan^{-1}(x))}{2\tan(\tan^{-1}(x))} \][/tex]
[tex]\[ x + 1 = \frac{1 - x^2}{2x} \][/tex]
### Step 6: Solve the resulting equation
Re-write and arrange terms:
[tex]\[ x + 1 = \frac{1 - x^2}{2x} \][/tex]
Multiply both sides by [tex]\(2x\)[/tex]:
[tex]\[ 2x(x + 1) = 1 - x^2 \][/tex]
[tex]\[ 2x^2 + 2x = 1 - x^2 \][/tex]
[tex]\[ 3x^2 + 2x - 1 = 0 \][/tex]
### Step 7: Solve the quadratic equation
Solve the quadratic equation using the quadratic formula [tex]\(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\)[/tex]:
Here, [tex]\(a = 3\)[/tex], [tex]\(b = 2\)[/tex], and [tex]\(c = -1\)[/tex]:
[tex]\[ x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 3 \cdot (-1)}}{2 \cdot 3} \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{4 + 12}}{6} \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{16}}{6} \][/tex]
[tex]\[ x = \frac{-2 \pm 4}{6} \][/tex]
So,
[tex]\[ x = \frac{2}{6} = \frac{1}{3} \][/tex]
[tex]\[ x = \frac{-6}{6} = -1 \][/tex]
### Conclusions
The solutions to the original equation are:
[tex]\[ x = \frac{1}{3} \, \text{and} \, x = -1 \][/tex]
Hence, the solutions are [tex]\( x = \frac{1}{3} \)[/tex] and [tex]\( x = -1 \)[/tex].
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and come back for more insightful information.