Discover new perspectives and gain insights with IDNLearn.com. Get thorough and trustworthy answers to your queries from our extensive network of knowledgeable professionals.
Sagot :
To graph the function [tex]\( y = 2 \log_2(-x + 7) - 3 \)[/tex], follow these detailed steps to identify at least five points with integer coordinates:
1. Understand the function:
[tex]\[ y = 2 \log_2(-x + 7) - 3 \][/tex]
This function is a logarithmic function with a base of 2 that has been horizontally translated and scaled.
2. Identify the domain:
The domain is determined by the argument of the logarithm being positive:
[tex]\[ -x + 7 > 0 \][/tex]
Solving for [tex]\( x \)[/tex], we get:
[tex]\[ x < 7 \][/tex]
Hence, the domain of the function is [tex]\( x < 7 \)[/tex].
3. Set up the logarithmic expression:
Rewrite the function to focus on the inside of the log:
[tex]\[ y = 2 \log_2(7 - x) - 3 \][/tex]
This setup shows that the expression inside the log [tex]\( 7 - x \)[/tex] must be positive.
4. Find key points (calculate integer coordinates):
- When [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 2 \log_2(7) - 3 \][/tex]
Using an approximate value for [tex]\( \log_2(7) \approx 2.807 \)[/tex]:
[tex]\[ y \approx 2 \times 2.807 - 3 \approx 5.614 - 3 \approx 2.614 \][/tex]
Rounding to the nearest integer:
[tex]\[ (0, 2.6) \rightarrow \text{(0, 3)} \][/tex]
- When [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 2 \log_2(6) - 3 \][/tex]
Using an approximate value for [tex]\( \log_2(6) \approx 2.585 \)[/tex]:
[tex]\[ y \approx 2 \times 2.585 - 3 \approx 5.17 - 3 \approx 2.17 \][/tex]
Rounding to the nearest integer:
[tex]\[ (1, 2.2) \rightarrow \text{(1, 2)} \][/tex]
- When [tex]\( x = 3 \)[/tex]:
[tex]\[ y = 2 \log_2(4) - 3 \][/tex]
Since [tex]\( \log_2(4) = 2 \)[/tex]:
[tex]\[ y = 2 \times 2 - 3 = 4 - 3 = 1 \][/tex]
[tex]\[ (3, 1) \][/tex]
- When [tex]\( x = 5 \)[/tex]:
[tex]\[ y = 2 \log_2(2) - 3 \][/tex]
Since [tex]\( \log_2(2) = 1 \)[/tex]:
[tex]\[ y = 2 \times 1 - 3 = 2 - 3 = -1 \][/tex]
[tex]\[ (5, -1) \][/tex]
- When [tex]\( x = 6 \)[/tex]:
[tex]\[ y = 2 \log_2(1) - 3 \][/tex]
Since [tex]\( \log_2(1) = 0 \)[/tex]:
[tex]\[ y = 2 \times 0 - 3 = 0 - 3 = -3 \][/tex]
[tex]\[ (6, -3) \][/tex]
5. Plot the points:
Plot the calculated points on the graph:
[tex]\[ (0, 3), (1, 2), (3, 1), (5, -1), (6, -3) \][/tex]
6. Connect the points:
Connect these points smoothly, keeping in mind the logarithmic nature of the function. The curve should approach negative infinity as [tex]\( x \)[/tex] approaches 7 from the left.
By plotting these five points with integer coordinates and connecting them appropriately, you should be able to graph [tex]\( y = 2 \log_2(-x + 7) - 3 \)[/tex].
1. Understand the function:
[tex]\[ y = 2 \log_2(-x + 7) - 3 \][/tex]
This function is a logarithmic function with a base of 2 that has been horizontally translated and scaled.
2. Identify the domain:
The domain is determined by the argument of the logarithm being positive:
[tex]\[ -x + 7 > 0 \][/tex]
Solving for [tex]\( x \)[/tex], we get:
[tex]\[ x < 7 \][/tex]
Hence, the domain of the function is [tex]\( x < 7 \)[/tex].
3. Set up the logarithmic expression:
Rewrite the function to focus on the inside of the log:
[tex]\[ y = 2 \log_2(7 - x) - 3 \][/tex]
This setup shows that the expression inside the log [tex]\( 7 - x \)[/tex] must be positive.
4. Find key points (calculate integer coordinates):
- When [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 2 \log_2(7) - 3 \][/tex]
Using an approximate value for [tex]\( \log_2(7) \approx 2.807 \)[/tex]:
[tex]\[ y \approx 2 \times 2.807 - 3 \approx 5.614 - 3 \approx 2.614 \][/tex]
Rounding to the nearest integer:
[tex]\[ (0, 2.6) \rightarrow \text{(0, 3)} \][/tex]
- When [tex]\( x = 1 \)[/tex]:
[tex]\[ y = 2 \log_2(6) - 3 \][/tex]
Using an approximate value for [tex]\( \log_2(6) \approx 2.585 \)[/tex]:
[tex]\[ y \approx 2 \times 2.585 - 3 \approx 5.17 - 3 \approx 2.17 \][/tex]
Rounding to the nearest integer:
[tex]\[ (1, 2.2) \rightarrow \text{(1, 2)} \][/tex]
- When [tex]\( x = 3 \)[/tex]:
[tex]\[ y = 2 \log_2(4) - 3 \][/tex]
Since [tex]\( \log_2(4) = 2 \)[/tex]:
[tex]\[ y = 2 \times 2 - 3 = 4 - 3 = 1 \][/tex]
[tex]\[ (3, 1) \][/tex]
- When [tex]\( x = 5 \)[/tex]:
[tex]\[ y = 2 \log_2(2) - 3 \][/tex]
Since [tex]\( \log_2(2) = 1 \)[/tex]:
[tex]\[ y = 2 \times 1 - 3 = 2 - 3 = -1 \][/tex]
[tex]\[ (5, -1) \][/tex]
- When [tex]\( x = 6 \)[/tex]:
[tex]\[ y = 2 \log_2(1) - 3 \][/tex]
Since [tex]\( \log_2(1) = 0 \)[/tex]:
[tex]\[ y = 2 \times 0 - 3 = 0 - 3 = -3 \][/tex]
[tex]\[ (6, -3) \][/tex]
5. Plot the points:
Plot the calculated points on the graph:
[tex]\[ (0, 3), (1, 2), (3, 1), (5, -1), (6, -3) \][/tex]
6. Connect the points:
Connect these points smoothly, keeping in mind the logarithmic nature of the function. The curve should approach negative infinity as [tex]\( x \)[/tex] approaches 7 from the left.
By plotting these five points with integer coordinates and connecting them appropriately, you should be able to graph [tex]\( y = 2 \log_2(-x + 7) - 3 \)[/tex].
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your questions find clarity at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.