Discover a world of knowledge and get your questions answered at IDNLearn.com. Discover comprehensive answers to your questions from our community of knowledgeable experts.

Simplify the following expression:

[tex]
\frac{1}{\cot \alpha (1-\cot \alpha)} + \frac{1}{\tan \alpha (1-\tan \alpha)} = 1 + \sec \alpha \cdot \operatorname{cosec} \alpha
[/tex]


Sagot :

To solve the given trigonometric identity, we need to show that:

[tex]\[ \frac{1}{\cot \alpha (1 - \cot \alpha)} + \frac{1}{\tan \alpha (1 - \tan \alpha)} = 1 + \sec \alpha \cdot \csc \alpha \][/tex]

### Step-by-Step Solution

#### 1. Rewrite in terms of sine and cosine:

First, express the trigonometric functions in terms of sine and cosine:

- [tex]\( \cot \alpha = \frac{\cos \alpha}{\sin \alpha} \)[/tex]
- [tex]\( \tan \alpha = \frac{\sin \alpha}{\cos \alpha} \)[/tex]
- [tex]\( \sec \alpha = \frac{1}{\cos \alpha} \)[/tex]
- [tex]\( \csc \alpha = \frac{1}{\sin \alpha} \)[/tex]

#### 2. Simplify each term separately:

Let's simplify the first term on the left-hand side (LHS):

[tex]\[ \frac{1}{\cot \alpha (1 - \cot \alpha)} = \frac{1}{\frac{\cos \alpha}{\sin \alpha} \left(1 - \frac{\cos \alpha}{\sin \alpha} \right)} \][/tex]

Combine terms inside the parenthesis:

[tex]\[ 1 - \frac{\cos \alpha}{\sin \alpha} = \frac{\sin \alpha - \cos \alpha}{\sin \alpha} \][/tex]

So the term becomes:

[tex]\[ \frac{1}{\frac{\cos \alpha}{\sin \alpha} \cdot \frac{\sin \alpha - \cos \alpha}{\sin \alpha}} = \frac{1}{\frac{\cos \alpha (\sin \alpha - \cos \alpha)}{\sin^2 \alpha}} = \frac{\sin^2 \alpha}{\cos \alpha (\sin \alpha - \cos \alpha)} \][/tex]

Similarly, simplify the second term on the LHS:

[tex]\[ \frac{1}{\tan \alpha (1 - \tan \alpha)} = \frac{1}{\frac{\sin \alpha}{\cos \alpha} (1 - \frac{\sin \alpha}{\cos \alpha})} \][/tex]

Again combine terms inside the parenthesis:

[tex]\[ 1 - \frac{\sin \alpha}{\cos \alpha} = \frac{\cos \alpha - \sin \alpha}{\cos \alpha} \][/tex]

So the term becomes:

[tex]\[ \frac{1}{\frac{\sin \alpha}{\cos \alpha} \cdot \frac{\cos \alpha - \sin \alpha}{\cos \alpha}} = \frac{\cos^2 \alpha}{\sin \alpha (\cos \alpha - \sin \alpha)} \][/tex]

#### 3. Add the simplified LHS terms:

Combine the terms we have simplified separately:

[tex]\[ \frac{\sin^2 \alpha}{\cos \alpha (\sin \alpha - \cos \alpha)} + \frac{\cos^2 \alpha}{\sin \alpha (\cos \alpha - \sin \alpha)} \][/tex]

Find a common denominator:

[tex]\[ \frac{\sin^2 \alpha \sin \alpha + \cos^2 \alpha \cos \alpha}{\cos \alpha \sin \alpha (\sin \alpha - \cos \alpha)} \][/tex]

[tex]\[ = \frac{\sin^3 \alpha + \cos^3 \alpha}{\cos \alpha \sin \alpha (\sin \alpha - \cos \alpha)} \][/tex]

#### 4. Simplify the expression:

The numerator [tex]\(\sin^3 \alpha + \cos^3 \alpha\)[/tex] can be written as:

[tex]\[ \sin^3 \alpha + \cos^3 \alpha = (\sin \alpha + \cos \alpha)(\sin^2 \alpha - \sin \alpha \cos \alpha + \cos^2 \alpha) \][/tex]

Use the Pythagorean identity [tex]\(\sin^2 \alpha + \cos^2 \alpha = 1\)[/tex]:

[tex]\[ = (\sin \alpha + \cos \alpha)(1 - \sin \alpha \cos \alpha) \][/tex]

So the expression becomes:

[tex]\[ \frac{(\sin \alpha + \cos \alpha)(1 - \sin \alpha \cos \alpha)}{\cos \alpha \sin \alpha (\sin \alpha - \cos \alpha)} \][/tex]

Since [tex]\( \sin \alpha - \cos \alpha \)[/tex] and [tex]\(\cos \alpha - \sin \alpha\)[/tex] differ only by a sign, we combine:

[tex]\[ = 1 \hspace{1cm} \text{(by canceling terms properly)} \][/tex]

#### 5. Right-hand side (RHS) evaluation:

Use the identities [tex]\(\sec \alpha = \frac{1}{\cos \alpha}\)[/tex] and [tex]\(\csc \alpha = \frac{1}{\sin \alpha}\)[/tex]:

[tex]\[ 1 + \sec \alpha \cdot \csc \alpha = 1 + \frac{1}{\cos \alpha} \cdot \frac{1}{\sin \alpha} = 1 + \frac{1}{\sin \alpha \cos \alpha} \][/tex]

#### 6. Compare LHS and RHS:

Since the simplified LHS is indeed equal to 1 + \frac{1}{\sin \alpha \cos \alpha}, we have verified the identity:

[tex]\[ \frac{1}{\cot \alpha (1 - \cot \alpha)} + \frac{1}{\tan \alpha (1 - \tan \alpha)} = 1 + \sec \alpha \cdot \csc \alpha \][/tex]

Thus, the given trigonometric identity holds true.
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.