IDNLearn.com: Your reliable source for finding expert answers. Get accurate and detailed answers to your questions from our dedicated community members who are always ready to help.
Sagot :
To solve the given linear programming problem, we aim to minimize the objective function [tex]\( 3x_2 + 2x_1 \)[/tex] subject to the constraints:
1. [tex]\( 8 + x_1 - 3x_2 \geq 3 \)[/tex]
2. [tex]\( 2x_2 \leq 7 \)[/tex]
3. [tex]\( x_1 + 2x_2 \leq 5 \)[/tex]
4. [tex]\( x_1 \geq 0 \)[/tex]
5. [tex]\( x_2 \geq 0 \)[/tex]
Let's break it down step-by-step:
### Step 1: Convert the Constraints
Firstly, we need to convert the inequalities into a standard form, which would look like [tex]\( \mathbf{A}x \leq \mathbf{b} \)[/tex].
1. [tex]\( 8 + x_1 - 3x_2 \geq 3 \)[/tex] can be rewritten by subtracting 8 from both sides:
[tex]\[ x_1 - 3x_2 \geq -5 \quad \text{or by multiplying by -1 we get} \quad -x_1 + 3x_2 \leq 5 \][/tex]
2. [tex]\( 2x_2 \leq 7 \)[/tex]
3. [tex]\( x_1 + 2x_2 \leq 5 \)[/tex]
### Step 2: Standard Form and Coefficients
We have converted constraints in standard form:
[tex]\[ \begin{cases} -x_1 + 3x_2 \leq 5 \\ 2x_2 \leq 7 \\ x_1 + 2x_2 \leq 5 \end{cases} \][/tex]
### Step 3: Set Up the Objective Function
The objective function is already in the correct form, and here we aim to minimize:
[tex]\[ 3x_2 + 2x_1 \][/tex]
### Step 4: Define the Bounds for Variables
The non-negativity constraints for the variables are [tex]\( x_1 \geq 0 \)[/tex] and [tex]\( x_2 \geq 0 \)[/tex], or in standard form:
[tex]\[ \begin{cases} x_1 \geq 0 \\ x_2 \geq 0 \end{cases} \][/tex]
### Step 5: Solve using Linear Programming
Given our constraints and bounds:
Inequality Constraints Coefficients Matrix A:
[tex]\[ \mathbf{A} = \begin{bmatrix} -1 & 3 \\ 0 & 2 \\ 1 & 2 \\ \end{bmatrix} \][/tex]
Right-hand Side Vector b:
[tex]\[ \mathbf{b} = \begin{bmatrix} 5 \\ 7 \\ 5 \\ \end{bmatrix} \][/tex]
Objective Function Coefficients Vector c:
[tex]\[ \mathbf{c} = \begin{bmatrix} 2 \\ 3 \\ \end{bmatrix} \][/tex]
Bounds for Variables:
[tex]\[ \begin{cases} 0 \leq x_1 < \infty \\ 0 \leq x_2 < \infty \\ \end{cases} \][/tex]
### Solution Interpretation
By solving this set of linear inequalities and the objective function with the specified constraints and bounds, the optimal values obtained are:
[tex]\[ x_1 = 0.0, \quad x_2 = 0.0 \][/tex]
And the minimized value of the objective function:
[tex]\[ 3x_2 + 2x_1 = 3 \cdot 0.0 + 2 \cdot 0.0 = 0.0 \][/tex]
Hence, the optimal solution values are [tex]\( x_1 = 0 \)[/tex], [tex]\( x_2 = 0 \)[/tex], and the minimum value of the objective function is 0.
1. [tex]\( 8 + x_1 - 3x_2 \geq 3 \)[/tex]
2. [tex]\( 2x_2 \leq 7 \)[/tex]
3. [tex]\( x_1 + 2x_2 \leq 5 \)[/tex]
4. [tex]\( x_1 \geq 0 \)[/tex]
5. [tex]\( x_2 \geq 0 \)[/tex]
Let's break it down step-by-step:
### Step 1: Convert the Constraints
Firstly, we need to convert the inequalities into a standard form, which would look like [tex]\( \mathbf{A}x \leq \mathbf{b} \)[/tex].
1. [tex]\( 8 + x_1 - 3x_2 \geq 3 \)[/tex] can be rewritten by subtracting 8 from both sides:
[tex]\[ x_1 - 3x_2 \geq -5 \quad \text{or by multiplying by -1 we get} \quad -x_1 + 3x_2 \leq 5 \][/tex]
2. [tex]\( 2x_2 \leq 7 \)[/tex]
3. [tex]\( x_1 + 2x_2 \leq 5 \)[/tex]
### Step 2: Standard Form and Coefficients
We have converted constraints in standard form:
[tex]\[ \begin{cases} -x_1 + 3x_2 \leq 5 \\ 2x_2 \leq 7 \\ x_1 + 2x_2 \leq 5 \end{cases} \][/tex]
### Step 3: Set Up the Objective Function
The objective function is already in the correct form, and here we aim to minimize:
[tex]\[ 3x_2 + 2x_1 \][/tex]
### Step 4: Define the Bounds for Variables
The non-negativity constraints for the variables are [tex]\( x_1 \geq 0 \)[/tex] and [tex]\( x_2 \geq 0 \)[/tex], or in standard form:
[tex]\[ \begin{cases} x_1 \geq 0 \\ x_2 \geq 0 \end{cases} \][/tex]
### Step 5: Solve using Linear Programming
Given our constraints and bounds:
Inequality Constraints Coefficients Matrix A:
[tex]\[ \mathbf{A} = \begin{bmatrix} -1 & 3 \\ 0 & 2 \\ 1 & 2 \\ \end{bmatrix} \][/tex]
Right-hand Side Vector b:
[tex]\[ \mathbf{b} = \begin{bmatrix} 5 \\ 7 \\ 5 \\ \end{bmatrix} \][/tex]
Objective Function Coefficients Vector c:
[tex]\[ \mathbf{c} = \begin{bmatrix} 2 \\ 3 \\ \end{bmatrix} \][/tex]
Bounds for Variables:
[tex]\[ \begin{cases} 0 \leq x_1 < \infty \\ 0 \leq x_2 < \infty \\ \end{cases} \][/tex]
### Solution Interpretation
By solving this set of linear inequalities and the objective function with the specified constraints and bounds, the optimal values obtained are:
[tex]\[ x_1 = 0.0, \quad x_2 = 0.0 \][/tex]
And the minimized value of the objective function:
[tex]\[ 3x_2 + 2x_1 = 3 \cdot 0.0 + 2 \cdot 0.0 = 0.0 \][/tex]
Hence, the optimal solution values are [tex]\( x_1 = 0 \)[/tex], [tex]\( x_2 = 0 \)[/tex], and the minimum value of the objective function is 0.
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is your go-to source for dependable answers. Thank you for visiting, and we hope to assist you again.