IDNLearn.com provides a reliable platform for finding accurate and timely answers. Our platform offers comprehensive and accurate responses to help you make informed decisions on any topic.
Sagot :
To solve the problem of determining the horizontal range of an apple thrown with a speed of [tex]\(30 \, \text{m/s}\)[/tex] at an angle of [tex]\(30^\circ\)[/tex] above the horizon, we follow these steps:
### Step 1: Break the initial velocity into horizontal and vertical components
Given:
- Initial speed, [tex]\(v_0 = 30 \, \text{m/s}\)[/tex]
- Angle of projection, [tex]\(\theta = 30^\circ\)[/tex]
- Acceleration due to gravity, [tex]\(g = 9.8 \, \text{m/s}^2\)[/tex]
First, we find the horizontal and vertical components of the initial speed:
[tex]\[ v_{\text{horizontal}} = v_0 \cos(\theta) \][/tex]
[tex]\[ v_{\text{vertical}} = v_0 \sin(\theta) \][/tex]
### Step 2: Calculate the horizontal component of the velocity
[tex]\[ v_{\text{horizontal}} = 30 \cos(30^\circ) \][/tex]
Cosine of [tex]\(30^\circ\)[/tex] is [tex]\(\frac{\sqrt{3}}{2}\)[/tex], so:
[tex]\[ v_{\text{horizontal}} = 30 \cdot \frac{\sqrt{3}}{2} \][/tex]
[tex]\[ v_{\text{horizontal}} \approx 30 \cdot 0.866 = 25.98 \, \text{m/s} \][/tex]
### Step 3: Calculate the vertical component of the velocity
[tex]\[ v_{\text{vertical}} = 30 \sin(30^\circ) \][/tex]
Sine of [tex]\(30^\circ\)[/tex] is [tex]\(\frac{1}{2}\)[/tex], so:
[tex]\[ v_{\text{vertical}} = 30 \cdot \frac{1}{2} \][/tex]
[tex]\[ v_{\text{vertical}} = 15 \, \text{m/s} \][/tex]
### Step 4: Determine the time of flight
The time to reach the highest point is calculated using:
[tex]\[ t_{\text{up}} = \frac{v_{\text{vertical}}}{g} = \frac{15}{9.8} \][/tex]
[tex]\[ t_{\text{up}} \approx 1.53 \, \text{seconds} \][/tex]
Since the time to reach the highest point and the time to come back down are equal, the total time of flight is:
[tex]\[ t_{\text{total}} = 2 \cdot t_{\text{up}} \][/tex]
[tex]\[ t_{\text{total}} \approx 2 \cdot 1.53 = 3.06 \, \text{seconds} \][/tex]
### Step 5: Calculate the horizontal range
The horizontal range is given by:
[tex]\[ R = v_{\text{horizontal}} \times t_{\text{total}} \][/tex]
[tex]\[ R = 25.98 \, \text{m/s} \times 3.06 \, \text{s} \][/tex]
[tex]\[ R \approx 79.53 \, \text{meters} \][/tex]
Thus, the horizontal range of the apple is approximately [tex]\(79.53 \, \text{meters}\)[/tex].
### Conclusion
Thus, the closest answer to the calculated horizontal range is:
[tex]\[ \boxed{80 \, \text{meters}} \][/tex]
Therefore, the correct option is:
[tex]\[ D. \, 80 \, \text{m} \][/tex]
### Step 1: Break the initial velocity into horizontal and vertical components
Given:
- Initial speed, [tex]\(v_0 = 30 \, \text{m/s}\)[/tex]
- Angle of projection, [tex]\(\theta = 30^\circ\)[/tex]
- Acceleration due to gravity, [tex]\(g = 9.8 \, \text{m/s}^2\)[/tex]
First, we find the horizontal and vertical components of the initial speed:
[tex]\[ v_{\text{horizontal}} = v_0 \cos(\theta) \][/tex]
[tex]\[ v_{\text{vertical}} = v_0 \sin(\theta) \][/tex]
### Step 2: Calculate the horizontal component of the velocity
[tex]\[ v_{\text{horizontal}} = 30 \cos(30^\circ) \][/tex]
Cosine of [tex]\(30^\circ\)[/tex] is [tex]\(\frac{\sqrt{3}}{2}\)[/tex], so:
[tex]\[ v_{\text{horizontal}} = 30 \cdot \frac{\sqrt{3}}{2} \][/tex]
[tex]\[ v_{\text{horizontal}} \approx 30 \cdot 0.866 = 25.98 \, \text{m/s} \][/tex]
### Step 3: Calculate the vertical component of the velocity
[tex]\[ v_{\text{vertical}} = 30 \sin(30^\circ) \][/tex]
Sine of [tex]\(30^\circ\)[/tex] is [tex]\(\frac{1}{2}\)[/tex], so:
[tex]\[ v_{\text{vertical}} = 30 \cdot \frac{1}{2} \][/tex]
[tex]\[ v_{\text{vertical}} = 15 \, \text{m/s} \][/tex]
### Step 4: Determine the time of flight
The time to reach the highest point is calculated using:
[tex]\[ t_{\text{up}} = \frac{v_{\text{vertical}}}{g} = \frac{15}{9.8} \][/tex]
[tex]\[ t_{\text{up}} \approx 1.53 \, \text{seconds} \][/tex]
Since the time to reach the highest point and the time to come back down are equal, the total time of flight is:
[tex]\[ t_{\text{total}} = 2 \cdot t_{\text{up}} \][/tex]
[tex]\[ t_{\text{total}} \approx 2 \cdot 1.53 = 3.06 \, \text{seconds} \][/tex]
### Step 5: Calculate the horizontal range
The horizontal range is given by:
[tex]\[ R = v_{\text{horizontal}} \times t_{\text{total}} \][/tex]
[tex]\[ R = 25.98 \, \text{m/s} \times 3.06 \, \text{s} \][/tex]
[tex]\[ R \approx 79.53 \, \text{meters} \][/tex]
Thus, the horizontal range of the apple is approximately [tex]\(79.53 \, \text{meters}\)[/tex].
### Conclusion
Thus, the closest answer to the calculated horizontal range is:
[tex]\[ \boxed{80 \, \text{meters}} \][/tex]
Therefore, the correct option is:
[tex]\[ D. \, 80 \, \text{m} \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is committed to your satisfaction. Thank you for visiting, and see you next time for more helpful answers.