Solve your doubts and expand your knowledge with IDNLearn.com's extensive Q&A database. Get step-by-step guidance for all your technical questions from our knowledgeable community members.
Sagot :
To solve the problem of determining the horizontal range of an apple thrown with a speed of [tex]\(30 \, \text{m/s}\)[/tex] at an angle of [tex]\(30^\circ\)[/tex] above the horizon, we follow these steps:
### Step 1: Break the initial velocity into horizontal and vertical components
Given:
- Initial speed, [tex]\(v_0 = 30 \, \text{m/s}\)[/tex]
- Angle of projection, [tex]\(\theta = 30^\circ\)[/tex]
- Acceleration due to gravity, [tex]\(g = 9.8 \, \text{m/s}^2\)[/tex]
First, we find the horizontal and vertical components of the initial speed:
[tex]\[ v_{\text{horizontal}} = v_0 \cos(\theta) \][/tex]
[tex]\[ v_{\text{vertical}} = v_0 \sin(\theta) \][/tex]
### Step 2: Calculate the horizontal component of the velocity
[tex]\[ v_{\text{horizontal}} = 30 \cos(30^\circ) \][/tex]
Cosine of [tex]\(30^\circ\)[/tex] is [tex]\(\frac{\sqrt{3}}{2}\)[/tex], so:
[tex]\[ v_{\text{horizontal}} = 30 \cdot \frac{\sqrt{3}}{2} \][/tex]
[tex]\[ v_{\text{horizontal}} \approx 30 \cdot 0.866 = 25.98 \, \text{m/s} \][/tex]
### Step 3: Calculate the vertical component of the velocity
[tex]\[ v_{\text{vertical}} = 30 \sin(30^\circ) \][/tex]
Sine of [tex]\(30^\circ\)[/tex] is [tex]\(\frac{1}{2}\)[/tex], so:
[tex]\[ v_{\text{vertical}} = 30 \cdot \frac{1}{2} \][/tex]
[tex]\[ v_{\text{vertical}} = 15 \, \text{m/s} \][/tex]
### Step 4: Determine the time of flight
The time to reach the highest point is calculated using:
[tex]\[ t_{\text{up}} = \frac{v_{\text{vertical}}}{g} = \frac{15}{9.8} \][/tex]
[tex]\[ t_{\text{up}} \approx 1.53 \, \text{seconds} \][/tex]
Since the time to reach the highest point and the time to come back down are equal, the total time of flight is:
[tex]\[ t_{\text{total}} = 2 \cdot t_{\text{up}} \][/tex]
[tex]\[ t_{\text{total}} \approx 2 \cdot 1.53 = 3.06 \, \text{seconds} \][/tex]
### Step 5: Calculate the horizontal range
The horizontal range is given by:
[tex]\[ R = v_{\text{horizontal}} \times t_{\text{total}} \][/tex]
[tex]\[ R = 25.98 \, \text{m/s} \times 3.06 \, \text{s} \][/tex]
[tex]\[ R \approx 79.53 \, \text{meters} \][/tex]
Thus, the horizontal range of the apple is approximately [tex]\(79.53 \, \text{meters}\)[/tex].
### Conclusion
Thus, the closest answer to the calculated horizontal range is:
[tex]\[ \boxed{80 \, \text{meters}} \][/tex]
Therefore, the correct option is:
[tex]\[ D. \, 80 \, \text{m} \][/tex]
### Step 1: Break the initial velocity into horizontal and vertical components
Given:
- Initial speed, [tex]\(v_0 = 30 \, \text{m/s}\)[/tex]
- Angle of projection, [tex]\(\theta = 30^\circ\)[/tex]
- Acceleration due to gravity, [tex]\(g = 9.8 \, \text{m/s}^2\)[/tex]
First, we find the horizontal and vertical components of the initial speed:
[tex]\[ v_{\text{horizontal}} = v_0 \cos(\theta) \][/tex]
[tex]\[ v_{\text{vertical}} = v_0 \sin(\theta) \][/tex]
### Step 2: Calculate the horizontal component of the velocity
[tex]\[ v_{\text{horizontal}} = 30 \cos(30^\circ) \][/tex]
Cosine of [tex]\(30^\circ\)[/tex] is [tex]\(\frac{\sqrt{3}}{2}\)[/tex], so:
[tex]\[ v_{\text{horizontal}} = 30 \cdot \frac{\sqrt{3}}{2} \][/tex]
[tex]\[ v_{\text{horizontal}} \approx 30 \cdot 0.866 = 25.98 \, \text{m/s} \][/tex]
### Step 3: Calculate the vertical component of the velocity
[tex]\[ v_{\text{vertical}} = 30 \sin(30^\circ) \][/tex]
Sine of [tex]\(30^\circ\)[/tex] is [tex]\(\frac{1}{2}\)[/tex], so:
[tex]\[ v_{\text{vertical}} = 30 \cdot \frac{1}{2} \][/tex]
[tex]\[ v_{\text{vertical}} = 15 \, \text{m/s} \][/tex]
### Step 4: Determine the time of flight
The time to reach the highest point is calculated using:
[tex]\[ t_{\text{up}} = \frac{v_{\text{vertical}}}{g} = \frac{15}{9.8} \][/tex]
[tex]\[ t_{\text{up}} \approx 1.53 \, \text{seconds} \][/tex]
Since the time to reach the highest point and the time to come back down are equal, the total time of flight is:
[tex]\[ t_{\text{total}} = 2 \cdot t_{\text{up}} \][/tex]
[tex]\[ t_{\text{total}} \approx 2 \cdot 1.53 = 3.06 \, \text{seconds} \][/tex]
### Step 5: Calculate the horizontal range
The horizontal range is given by:
[tex]\[ R = v_{\text{horizontal}} \times t_{\text{total}} \][/tex]
[tex]\[ R = 25.98 \, \text{m/s} \times 3.06 \, \text{s} \][/tex]
[tex]\[ R \approx 79.53 \, \text{meters} \][/tex]
Thus, the horizontal range of the apple is approximately [tex]\(79.53 \, \text{meters}\)[/tex].
### Conclusion
Thus, the closest answer to the calculated horizontal range is:
[tex]\[ \boxed{80 \, \text{meters}} \][/tex]
Therefore, the correct option is:
[tex]\[ D. \, 80 \, \text{m} \][/tex]
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thanks for visiting IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more helpful information.