Find expert answers and community support for all your questions on IDNLearn.com. Our experts provide accurate and detailed responses to help you navigate any topic or issue with confidence.
Sagot :
To show that a single nucleon state, which is an eigenstate of the operators [tex]\( J^2, L^2, S^2, \)[/tex] and [tex]\( J_z \)[/tex], is also an eigenstate of the operator [tex]\( \mathbf{L} \cdot \mathbf{S} \)[/tex] with the eigenvalue
[tex]\[ \frac{1}{2}[j(j+1) - l(l+1) - s(s+1)] \hbar^2, \][/tex]
we need to use some fundamental properties of angular momentum in quantum mechanics. Let's follow a step-by-step approach:
1. Review the Definitions:
- [tex]\( \mathbf{J} = \mathbf{L} + \mathbf{S} \)[/tex]: Total angular momentum operator, where [tex]\( \mathbf{L} \)[/tex] is the orbital angular momentum and [tex]\( \mathbf{S} \)[/tex] is the spin angular momentum.
- [tex]\(J^2\)[/tex], [tex]\(L^2\)[/tex], and [tex]\(S^2\)[/tex] are the magnitudes squared of total, orbital, and spin angular momenta, respectively.
2. Eigenvalue Equations:
- For [tex]\(J^2\)[/tex]: [tex]\( J^2 |j, l, s \rangle = \hbar^2 j(j+1) |j, l, s \rangle \)[/tex]
- For [tex]\(L^2\)[/tex]: [tex]\( L^2 |j, l, s \rangle = \hbar^2 l(l+1) |j, l, s \rangle \)[/tex]
- For [tex]\(S^2\)[/tex]: [tex]\( S^2 |j, l, s \rangle = \hbar^2 s(s+1) |j, l, s \rangle \)[/tex]
3. Express [tex]\( J^2 \)[/tex] in Terms of [tex]\( L \)[/tex] and [tex]\( S \)[/tex]:
[tex]\[ J^2 = (\mathbf{L} + \mathbf{S}) \cdot (\mathbf{L} + \mathbf{S}) \][/tex]
Expanding this, we get:
[tex]\[ J^2 = L^2 + S^2 + 2 \mathbf{L} \cdot \mathbf{S} \][/tex]
4. Rearrange the Expression:
[tex]\[ 2 \mathbf{L} \cdot \mathbf{S} = J^2 - L^2 - S^2 \][/tex]
5. Apply Eigenvalue Equations:
When applying to the state [tex]\( |j, l, s \rangle \)[/tex]:
[tex]\[ 2 \mathbf{L} \cdot \mathbf{S} |j, l, s \rangle = (\hbar^2 j(j+1) - \hbar^2 l(l+1) - \hbar^2 s(s+1)) |j, l, s \rangle \][/tex]
6. Simplify:
[tex]\[ \mathbf{L} \cdot \mathbf{S} |j, l, s \rangle = \frac{1}{2} [ \hbar^2 j(j+1) - \hbar^2 l(l+1) - \hbar^2 s(s+1)] |j, l, s \rangle \][/tex]
7. Extract the Eigenvalue:
Thus, the operator [tex]\( \mathbf{L} \cdot \mathbf{S} \)[/tex] has the eigenvalue
[tex]\[ \frac{1}{2} [j(j+1) - l(l+1) - s(s+1)] \hbar^2 \][/tex]
for the state [tex]\( |j, l, s \rangle \)[/tex].
Therefore, we have shown that the single nucleon state is indeed an eigenstate of [tex]\( \mathbf{L} \cdot \mathbf{S} \)[/tex] with the desired eigenvalue
[tex]\[ \frac{1}{2}[j(j+1) - l(l+1) - s(s+1)] \hbar^2. \][/tex]
[tex]\[ \frac{1}{2}[j(j+1) - l(l+1) - s(s+1)] \hbar^2, \][/tex]
we need to use some fundamental properties of angular momentum in quantum mechanics. Let's follow a step-by-step approach:
1. Review the Definitions:
- [tex]\( \mathbf{J} = \mathbf{L} + \mathbf{S} \)[/tex]: Total angular momentum operator, where [tex]\( \mathbf{L} \)[/tex] is the orbital angular momentum and [tex]\( \mathbf{S} \)[/tex] is the spin angular momentum.
- [tex]\(J^2\)[/tex], [tex]\(L^2\)[/tex], and [tex]\(S^2\)[/tex] are the magnitudes squared of total, orbital, and spin angular momenta, respectively.
2. Eigenvalue Equations:
- For [tex]\(J^2\)[/tex]: [tex]\( J^2 |j, l, s \rangle = \hbar^2 j(j+1) |j, l, s \rangle \)[/tex]
- For [tex]\(L^2\)[/tex]: [tex]\( L^2 |j, l, s \rangle = \hbar^2 l(l+1) |j, l, s \rangle \)[/tex]
- For [tex]\(S^2\)[/tex]: [tex]\( S^2 |j, l, s \rangle = \hbar^2 s(s+1) |j, l, s \rangle \)[/tex]
3. Express [tex]\( J^2 \)[/tex] in Terms of [tex]\( L \)[/tex] and [tex]\( S \)[/tex]:
[tex]\[ J^2 = (\mathbf{L} + \mathbf{S}) \cdot (\mathbf{L} + \mathbf{S}) \][/tex]
Expanding this, we get:
[tex]\[ J^2 = L^2 + S^2 + 2 \mathbf{L} \cdot \mathbf{S} \][/tex]
4. Rearrange the Expression:
[tex]\[ 2 \mathbf{L} \cdot \mathbf{S} = J^2 - L^2 - S^2 \][/tex]
5. Apply Eigenvalue Equations:
When applying to the state [tex]\( |j, l, s \rangle \)[/tex]:
[tex]\[ 2 \mathbf{L} \cdot \mathbf{S} |j, l, s \rangle = (\hbar^2 j(j+1) - \hbar^2 l(l+1) - \hbar^2 s(s+1)) |j, l, s \rangle \][/tex]
6. Simplify:
[tex]\[ \mathbf{L} \cdot \mathbf{S} |j, l, s \rangle = \frac{1}{2} [ \hbar^2 j(j+1) - \hbar^2 l(l+1) - \hbar^2 s(s+1)] |j, l, s \rangle \][/tex]
7. Extract the Eigenvalue:
Thus, the operator [tex]\( \mathbf{L} \cdot \mathbf{S} \)[/tex] has the eigenvalue
[tex]\[ \frac{1}{2} [j(j+1) - l(l+1) - s(s+1)] \hbar^2 \][/tex]
for the state [tex]\( |j, l, s \rangle \)[/tex].
Therefore, we have shown that the single nucleon state is indeed an eigenstate of [tex]\( \mathbf{L} \cdot \mathbf{S} \)[/tex] with the desired eigenvalue
[tex]\[ \frac{1}{2}[j(j+1) - l(l+1) - s(s+1)] \hbar^2. \][/tex]
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Thanks for visiting IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more helpful information.