IDNLearn.com offers a unique blend of expert answers and community-driven knowledge. Ask your questions and receive accurate, in-depth answers from our knowledgeable community members.
Sagot :
Sure, let's carefully analyze and sketch the rational function [tex]\( f(x)=\frac{-x^2 + 3x + 3}{x - 2} \)[/tex]. We will proceed step-by-step, starting with the asymptotes and then finding points to plot the function.
### Step 1: Find the Vertical Asymptote
A vertical asymptote occurs where the denominator is zero (i.e., where the function is undefined).
Set the denominator equal to zero:
[tex]\[ x - 2 = 0 \][/tex]
[tex]\[ x = 2 \][/tex]
So, there is a vertical asymptote at [tex]\( x = 2 \)[/tex].
### Step 2: Find the Horizontal Asymptote
For the horizontal asymptote, we compare the degrees of the numerator and the denominator:
- The numerator [tex]\( -x^2 + 3x + 3 \)[/tex] is a quadratic polynomial (degree 2).
- The denominator [tex]\( x - 2 \)[/tex] is a linear polynomial (degree 1).
Since the degree of the numerator is greater than the degree of the denominator, there isn't a horizontal asymptote. Instead, there will be an oblique (slant) asymptote.
### Step 3: Find the Oblique Asymptote
To find the oblique asymptote, we perform polynomial long division of the numerator by the denominator.
Dividing [tex]\( -x^2 + 3x + 3 \)[/tex] by [tex]\( x - 2 \)[/tex]:
[tex]\[ \frac{-x^2 + 3x + 3}{x - 2} \][/tex]
1. Divide the leading term of the numerator by the leading term of the denominator: [tex]\(-x^2 / x = -x\)[/tex].
2. Multiply [tex]\(-x\)[/tex] by [tex]\( x - 2 \)[/tex], which gives [tex]\(-x^2 + 2x\)[/tex].
3. Subtract [tex]\(-x^2 + 2x\)[/tex] from [tex]\(-x^2 + 3x + 3\)[/tex]:
[tex]\[ (-x^2 + 3x + 3) - (-x^2 + 2x) = x + 3 \][/tex]
4. Divide the new leading term of the numerator by the leading term of the denominator: [tex]\( x / x = 1 \)[/tex].
5. Multiply [tex]\( 1 \)[/tex] by [tex]\( x - 2 \)[/tex], which gives [tex]\( x - 2 \)[/tex].
6. Subtract [tex]\( x - 2 \)[/tex] from [tex]\( x + 3 \)[/tex]:
[tex]\[ (x + 3) - (x - 2) = 5 \][/tex]
So, the quotient is [tex]\( -x + 1 \)[/tex] (ignoring the remainder). Therefore, the equation of the oblique asymptote is:
[tex]\[ y = -x + 1 \][/tex]
### Step 4: Find and Plot Points Around the Vertical Asymptote
To better understand the behavior of the function around the vertical asymptote [tex]\( x = 2 \)[/tex], we choose some points to evaluate [tex]\( f(x) \)[/tex].
For [tex]\( x \)[/tex]:
- [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = \frac{-1^2 + 3(1) + 3}{1 - 2} = \frac{-1 + 3 + 3}{-1} = \frac{5}{-1} = -5 \][/tex]
- [tex]\( x = 3 \)[/tex]:
[tex]\[ f(3) = \frac{-3^2 + 3(3) + 3}{3 - 2} = \frac{-9 + 9 + 3}{1} = \frac{3}{1} = 3 \][/tex]
- [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \frac{-0^2 + 3(0) + 3}{0 - 2} = \frac{3}{-2} = -1.5 \][/tex]
- [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = \frac{-4^2 + 3(4) + 3}{4 - 2} = \frac{-16 + 12 + 3}{2} = \frac{-1}{2} = -0.5 \][/tex]
### Step 5: Sketch the Graph
To sketch the graph of [tex]\( f(x) \)[/tex]:
1. Draw the vertical asymptote [tex]\( x = 2 \)[/tex].
2. Draw the oblique asymptote [tex]\( y = -x + 1 \)[/tex].
3. Plot the calculated points: [tex]\((1, -5)\)[/tex], [tex]\((3, 3)\)[/tex], [tex]\((0, -1.5)\)[/tex], and [tex]\((4, -0.5)\)[/tex].
4. Sketch the curve, ensuring it approaches the asymptotes appropriately as [tex]\( x \)[/tex] gets closer to 2 and as [tex]\( x \)[/tex] approaches [tex]\(\pm \infty\)[/tex].
By following these steps, you can draw an accurate graph of the function [tex]\( f(x) \)[/tex].
### Step 1: Find the Vertical Asymptote
A vertical asymptote occurs where the denominator is zero (i.e., where the function is undefined).
Set the denominator equal to zero:
[tex]\[ x - 2 = 0 \][/tex]
[tex]\[ x = 2 \][/tex]
So, there is a vertical asymptote at [tex]\( x = 2 \)[/tex].
### Step 2: Find the Horizontal Asymptote
For the horizontal asymptote, we compare the degrees of the numerator and the denominator:
- The numerator [tex]\( -x^2 + 3x + 3 \)[/tex] is a quadratic polynomial (degree 2).
- The denominator [tex]\( x - 2 \)[/tex] is a linear polynomial (degree 1).
Since the degree of the numerator is greater than the degree of the denominator, there isn't a horizontal asymptote. Instead, there will be an oblique (slant) asymptote.
### Step 3: Find the Oblique Asymptote
To find the oblique asymptote, we perform polynomial long division of the numerator by the denominator.
Dividing [tex]\( -x^2 + 3x + 3 \)[/tex] by [tex]\( x - 2 \)[/tex]:
[tex]\[ \frac{-x^2 + 3x + 3}{x - 2} \][/tex]
1. Divide the leading term of the numerator by the leading term of the denominator: [tex]\(-x^2 / x = -x\)[/tex].
2. Multiply [tex]\(-x\)[/tex] by [tex]\( x - 2 \)[/tex], which gives [tex]\(-x^2 + 2x\)[/tex].
3. Subtract [tex]\(-x^2 + 2x\)[/tex] from [tex]\(-x^2 + 3x + 3\)[/tex]:
[tex]\[ (-x^2 + 3x + 3) - (-x^2 + 2x) = x + 3 \][/tex]
4. Divide the new leading term of the numerator by the leading term of the denominator: [tex]\( x / x = 1 \)[/tex].
5. Multiply [tex]\( 1 \)[/tex] by [tex]\( x - 2 \)[/tex], which gives [tex]\( x - 2 \)[/tex].
6. Subtract [tex]\( x - 2 \)[/tex] from [tex]\( x + 3 \)[/tex]:
[tex]\[ (x + 3) - (x - 2) = 5 \][/tex]
So, the quotient is [tex]\( -x + 1 \)[/tex] (ignoring the remainder). Therefore, the equation of the oblique asymptote is:
[tex]\[ y = -x + 1 \][/tex]
### Step 4: Find and Plot Points Around the Vertical Asymptote
To better understand the behavior of the function around the vertical asymptote [tex]\( x = 2 \)[/tex], we choose some points to evaluate [tex]\( f(x) \)[/tex].
For [tex]\( x \)[/tex]:
- [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = \frac{-1^2 + 3(1) + 3}{1 - 2} = \frac{-1 + 3 + 3}{-1} = \frac{5}{-1} = -5 \][/tex]
- [tex]\( x = 3 \)[/tex]:
[tex]\[ f(3) = \frac{-3^2 + 3(3) + 3}{3 - 2} = \frac{-9 + 9 + 3}{1} = \frac{3}{1} = 3 \][/tex]
- [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \frac{-0^2 + 3(0) + 3}{0 - 2} = \frac{3}{-2} = -1.5 \][/tex]
- [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = \frac{-4^2 + 3(4) + 3}{4 - 2} = \frac{-16 + 12 + 3}{2} = \frac{-1}{2} = -0.5 \][/tex]
### Step 5: Sketch the Graph
To sketch the graph of [tex]\( f(x) \)[/tex]:
1. Draw the vertical asymptote [tex]\( x = 2 \)[/tex].
2. Draw the oblique asymptote [tex]\( y = -x + 1 \)[/tex].
3. Plot the calculated points: [tex]\((1, -5)\)[/tex], [tex]\((3, 3)\)[/tex], [tex]\((0, -1.5)\)[/tex], and [tex]\((4, -0.5)\)[/tex].
4. Sketch the curve, ensuring it approaches the asymptotes appropriately as [tex]\( x \)[/tex] gets closer to 2 and as [tex]\( x \)[/tex] approaches [tex]\(\pm \infty\)[/tex].
By following these steps, you can draw an accurate graph of the function [tex]\( f(x) \)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com has the solutions you’re looking for. Thanks for visiting, and see you next time for more reliable information.