Solve your doubts and expand your knowledge with IDNLearn.com's extensive Q&A database. Join our platform to receive prompt and accurate responses from experienced professionals in various fields.
Sagot :
Sure, let's carefully analyze and sketch the rational function [tex]\( f(x)=\frac{-x^2 + 3x + 3}{x - 2} \)[/tex]. We will proceed step-by-step, starting with the asymptotes and then finding points to plot the function.
### Step 1: Find the Vertical Asymptote
A vertical asymptote occurs where the denominator is zero (i.e., where the function is undefined).
Set the denominator equal to zero:
[tex]\[ x - 2 = 0 \][/tex]
[tex]\[ x = 2 \][/tex]
So, there is a vertical asymptote at [tex]\( x = 2 \)[/tex].
### Step 2: Find the Horizontal Asymptote
For the horizontal asymptote, we compare the degrees of the numerator and the denominator:
- The numerator [tex]\( -x^2 + 3x + 3 \)[/tex] is a quadratic polynomial (degree 2).
- The denominator [tex]\( x - 2 \)[/tex] is a linear polynomial (degree 1).
Since the degree of the numerator is greater than the degree of the denominator, there isn't a horizontal asymptote. Instead, there will be an oblique (slant) asymptote.
### Step 3: Find the Oblique Asymptote
To find the oblique asymptote, we perform polynomial long division of the numerator by the denominator.
Dividing [tex]\( -x^2 + 3x + 3 \)[/tex] by [tex]\( x - 2 \)[/tex]:
[tex]\[ \frac{-x^2 + 3x + 3}{x - 2} \][/tex]
1. Divide the leading term of the numerator by the leading term of the denominator: [tex]\(-x^2 / x = -x\)[/tex].
2. Multiply [tex]\(-x\)[/tex] by [tex]\( x - 2 \)[/tex], which gives [tex]\(-x^2 + 2x\)[/tex].
3. Subtract [tex]\(-x^2 + 2x\)[/tex] from [tex]\(-x^2 + 3x + 3\)[/tex]:
[tex]\[ (-x^2 + 3x + 3) - (-x^2 + 2x) = x + 3 \][/tex]
4. Divide the new leading term of the numerator by the leading term of the denominator: [tex]\( x / x = 1 \)[/tex].
5. Multiply [tex]\( 1 \)[/tex] by [tex]\( x - 2 \)[/tex], which gives [tex]\( x - 2 \)[/tex].
6. Subtract [tex]\( x - 2 \)[/tex] from [tex]\( x + 3 \)[/tex]:
[tex]\[ (x + 3) - (x - 2) = 5 \][/tex]
So, the quotient is [tex]\( -x + 1 \)[/tex] (ignoring the remainder). Therefore, the equation of the oblique asymptote is:
[tex]\[ y = -x + 1 \][/tex]
### Step 4: Find and Plot Points Around the Vertical Asymptote
To better understand the behavior of the function around the vertical asymptote [tex]\( x = 2 \)[/tex], we choose some points to evaluate [tex]\( f(x) \)[/tex].
For [tex]\( x \)[/tex]:
- [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = \frac{-1^2 + 3(1) + 3}{1 - 2} = \frac{-1 + 3 + 3}{-1} = \frac{5}{-1} = -5 \][/tex]
- [tex]\( x = 3 \)[/tex]:
[tex]\[ f(3) = \frac{-3^2 + 3(3) + 3}{3 - 2} = \frac{-9 + 9 + 3}{1} = \frac{3}{1} = 3 \][/tex]
- [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \frac{-0^2 + 3(0) + 3}{0 - 2} = \frac{3}{-2} = -1.5 \][/tex]
- [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = \frac{-4^2 + 3(4) + 3}{4 - 2} = \frac{-16 + 12 + 3}{2} = \frac{-1}{2} = -0.5 \][/tex]
### Step 5: Sketch the Graph
To sketch the graph of [tex]\( f(x) \)[/tex]:
1. Draw the vertical asymptote [tex]\( x = 2 \)[/tex].
2. Draw the oblique asymptote [tex]\( y = -x + 1 \)[/tex].
3. Plot the calculated points: [tex]\((1, -5)\)[/tex], [tex]\((3, 3)\)[/tex], [tex]\((0, -1.5)\)[/tex], and [tex]\((4, -0.5)\)[/tex].
4. Sketch the curve, ensuring it approaches the asymptotes appropriately as [tex]\( x \)[/tex] gets closer to 2 and as [tex]\( x \)[/tex] approaches [tex]\(\pm \infty\)[/tex].
By following these steps, you can draw an accurate graph of the function [tex]\( f(x) \)[/tex].
### Step 1: Find the Vertical Asymptote
A vertical asymptote occurs where the denominator is zero (i.e., where the function is undefined).
Set the denominator equal to zero:
[tex]\[ x - 2 = 0 \][/tex]
[tex]\[ x = 2 \][/tex]
So, there is a vertical asymptote at [tex]\( x = 2 \)[/tex].
### Step 2: Find the Horizontal Asymptote
For the horizontal asymptote, we compare the degrees of the numerator and the denominator:
- The numerator [tex]\( -x^2 + 3x + 3 \)[/tex] is a quadratic polynomial (degree 2).
- The denominator [tex]\( x - 2 \)[/tex] is a linear polynomial (degree 1).
Since the degree of the numerator is greater than the degree of the denominator, there isn't a horizontal asymptote. Instead, there will be an oblique (slant) asymptote.
### Step 3: Find the Oblique Asymptote
To find the oblique asymptote, we perform polynomial long division of the numerator by the denominator.
Dividing [tex]\( -x^2 + 3x + 3 \)[/tex] by [tex]\( x - 2 \)[/tex]:
[tex]\[ \frac{-x^2 + 3x + 3}{x - 2} \][/tex]
1. Divide the leading term of the numerator by the leading term of the denominator: [tex]\(-x^2 / x = -x\)[/tex].
2. Multiply [tex]\(-x\)[/tex] by [tex]\( x - 2 \)[/tex], which gives [tex]\(-x^2 + 2x\)[/tex].
3. Subtract [tex]\(-x^2 + 2x\)[/tex] from [tex]\(-x^2 + 3x + 3\)[/tex]:
[tex]\[ (-x^2 + 3x + 3) - (-x^2 + 2x) = x + 3 \][/tex]
4. Divide the new leading term of the numerator by the leading term of the denominator: [tex]\( x / x = 1 \)[/tex].
5. Multiply [tex]\( 1 \)[/tex] by [tex]\( x - 2 \)[/tex], which gives [tex]\( x - 2 \)[/tex].
6. Subtract [tex]\( x - 2 \)[/tex] from [tex]\( x + 3 \)[/tex]:
[tex]\[ (x + 3) - (x - 2) = 5 \][/tex]
So, the quotient is [tex]\( -x + 1 \)[/tex] (ignoring the remainder). Therefore, the equation of the oblique asymptote is:
[tex]\[ y = -x + 1 \][/tex]
### Step 4: Find and Plot Points Around the Vertical Asymptote
To better understand the behavior of the function around the vertical asymptote [tex]\( x = 2 \)[/tex], we choose some points to evaluate [tex]\( f(x) \)[/tex].
For [tex]\( x \)[/tex]:
- [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = \frac{-1^2 + 3(1) + 3}{1 - 2} = \frac{-1 + 3 + 3}{-1} = \frac{5}{-1} = -5 \][/tex]
- [tex]\( x = 3 \)[/tex]:
[tex]\[ f(3) = \frac{-3^2 + 3(3) + 3}{3 - 2} = \frac{-9 + 9 + 3}{1} = \frac{3}{1} = 3 \][/tex]
- [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = \frac{-0^2 + 3(0) + 3}{0 - 2} = \frac{3}{-2} = -1.5 \][/tex]
- [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = \frac{-4^2 + 3(4) + 3}{4 - 2} = \frac{-16 + 12 + 3}{2} = \frac{-1}{2} = -0.5 \][/tex]
### Step 5: Sketch the Graph
To sketch the graph of [tex]\( f(x) \)[/tex]:
1. Draw the vertical asymptote [tex]\( x = 2 \)[/tex].
2. Draw the oblique asymptote [tex]\( y = -x + 1 \)[/tex].
3. Plot the calculated points: [tex]\((1, -5)\)[/tex], [tex]\((3, 3)\)[/tex], [tex]\((0, -1.5)\)[/tex], and [tex]\((4, -0.5)\)[/tex].
4. Sketch the curve, ensuring it approaches the asymptotes appropriately as [tex]\( x \)[/tex] gets closer to 2 and as [tex]\( x \)[/tex] approaches [tex]\(\pm \infty\)[/tex].
By following these steps, you can draw an accurate graph of the function [tex]\( f(x) \)[/tex].
Your participation means a lot to us. Keep sharing information and solutions. This community grows thanks to the amazing contributions from members like you. IDNLearn.com is committed to providing the best answers. Thank you for visiting, and see you next time for more solutions.