IDNLearn.com is designed to help you find the answers you need quickly and easily. Discover the information you need quickly and easily with our reliable and thorough Q&A platform.
Sagot :
To solve the given linear programming problem using graphical methods, we follow these steps:
1. Problem Formulation:
Maximize [tex]\( Z = 15X_1 - 10X_2 \)[/tex]
Subject to:
[tex]\[ \begin{aligned} 4X_1 + 6X_2 & \leq 360 \quad \text{(Constraint 1)}\\ 3X_1 & \leq 180 \quad \text{(Constraint 2)}\\ 5X_2 & \leq 280 \quad \text{(Constraint 3)}\\ X_1, X_2 & \geq 0 \quad \text{(Non-negativity constraints)} \end{aligned} \][/tex]
2. Plot the Constraints:
- For [tex]\( 4X_1 + 6X_2 \leq 360 \)[/tex]:
First, plot the line [tex]\( 4X_1 + 6X_2 = 360 \)[/tex].
To find the intercepts:
- When [tex]\( X_1 = 0 \)[/tex]: [tex]\( 6X_2 = 360 \implies X_2 = 60 \)[/tex]
- When [tex]\( X_2 = 0 \)[/tex]: [tex]\( 4X_1 = 360 \implies X_1 = 90 \)[/tex]
So, this line passes through points [tex]\( (0, 60) \)[/tex] and [tex]\( (90, 0) \)[/tex].
- For [tex]\( 3X_1 \leq 180 \)[/tex]:
Plot the line [tex]\( 3X_1 = 180 \)[/tex] which simplifies to [tex]\( X_1 = 60 \)[/tex].
This line is vertical at [tex]\( X_1 = 60 \)[/tex].
- For [tex]\( 5X_2 \leq 280 \)[/tex]:
Plot the line [tex]\( 5X_2 = 280 \)[/tex].
To find the intercepts:
- When [tex]\( X_1 = 0 \)[/tex]: [tex]\( 5X_2 = 280 \implies X_2 = 56 \)[/tex]
- This line is horizontal at [tex]\( X_2 = 56 \)[/tex].
3. Identify the Feasible Region:
The feasible region is bounded by the lines plotted above and is in the first quadrant since [tex]\( X_1 \)[/tex] and [tex]\( X_2 \)[/tex] are non-negative.
- [tex]\( X_1 = 60 \)[/tex]
- [tex]\( X_2 = 56 \)[/tex]
- [tex]\( 4X_1 + 6X_2 = 360 \)[/tex]
4. Determine the Corner Points:
The feasible region is defined by the intersection of the constraints. The key points of intersection (corner points) include:
- Intersection of [tex]\( 4X_1 + 6X_2 = 360 \)[/tex] and [tex]\( 3X_1 = 180 \)[/tex]:
- Substitute [tex]\( X_1 = 60 \)[/tex] into [tex]\( 4X_1 + 6X_2 = 360 \)[/tex]:
[tex]\[ 4(60) + 6X_2 = 360 \][/tex]
[tex]\[ 240 + 6X_2 = 360 \][/tex]
[tex]\[ 6X_2 = 120 \implies X_2 = 20 \][/tex]
- So, intersection point is [tex]\( (60, 20) \)[/tex]
- Intersection of [tex]\( 4X_1 + 6X_2 = 360 \)[/tex] and [tex]\( 5X_2 = 280 \)[/tex]:
- Substitute [tex]\( X_2 = 56 \)[/tex] into [tex]\( 4X_1 + 6X_2 = 360 \)[/tex]:
[tex]\[ 4X_1 + 6(56) = 360 \][/tex]
[tex]\[ 4X_1 + 336 = 360 \][/tex]
[tex]\[ 4X_1 = 24 \implies X_1 = 6 \][/tex]
- So, intersection point is [tex]\( (6, 56) \)[/tex]
- Intersection of [tex]\( X_1 = 60 \)[/tex] and [tex]\( X_2 = 0 \)[/tex]:
- Point is [tex]\( (60, 0) \)[/tex]
- Intersection of [tex]\( X_1 = 0 \)[/tex] and [tex]\( X_2 = 56 \)[/tex]:
- Point is [tex]\( (0, 56) \)[/tex]
5. Evaluate [tex]\( Z \)[/tex] at Each Corner Point:
[tex]\[ \begin{aligned} &\text{At } (60, 20): & Z &= 15(60) - 10(20) = 900 - 200 = 700\\ &\text{At } (6, 56): & Z &= 15(6) - 10(56) = 90 - 560 = -470\\ &\text{At } (60, 0): & Z &= 15(60) - 10(0) = 900\\ &\text{At } (0, 56): & Z &= 15(0) - 10(56) = 0 - 560 = -560\\ \end{aligned} \][/tex]
6. Conclusion:
The maximum value of [tex]\( Z \)[/tex] occurs at the point [tex]\( (60, 0) \)[/tex] with:
[tex]\[ \begin{aligned} X_1 & = 60\\ X_2 & = 0\\ Z & = 900 \end{aligned} \][/tex]
Hence, the optimal solution is [tex]\( X_1 = 60 \)[/tex], [tex]\( X_2 = 0 \)[/tex] and the maximum value of [tex]\( Z \)[/tex] is 900.
1. Problem Formulation:
Maximize [tex]\( Z = 15X_1 - 10X_2 \)[/tex]
Subject to:
[tex]\[ \begin{aligned} 4X_1 + 6X_2 & \leq 360 \quad \text{(Constraint 1)}\\ 3X_1 & \leq 180 \quad \text{(Constraint 2)}\\ 5X_2 & \leq 280 \quad \text{(Constraint 3)}\\ X_1, X_2 & \geq 0 \quad \text{(Non-negativity constraints)} \end{aligned} \][/tex]
2. Plot the Constraints:
- For [tex]\( 4X_1 + 6X_2 \leq 360 \)[/tex]:
First, plot the line [tex]\( 4X_1 + 6X_2 = 360 \)[/tex].
To find the intercepts:
- When [tex]\( X_1 = 0 \)[/tex]: [tex]\( 6X_2 = 360 \implies X_2 = 60 \)[/tex]
- When [tex]\( X_2 = 0 \)[/tex]: [tex]\( 4X_1 = 360 \implies X_1 = 90 \)[/tex]
So, this line passes through points [tex]\( (0, 60) \)[/tex] and [tex]\( (90, 0) \)[/tex].
- For [tex]\( 3X_1 \leq 180 \)[/tex]:
Plot the line [tex]\( 3X_1 = 180 \)[/tex] which simplifies to [tex]\( X_1 = 60 \)[/tex].
This line is vertical at [tex]\( X_1 = 60 \)[/tex].
- For [tex]\( 5X_2 \leq 280 \)[/tex]:
Plot the line [tex]\( 5X_2 = 280 \)[/tex].
To find the intercepts:
- When [tex]\( X_1 = 0 \)[/tex]: [tex]\( 5X_2 = 280 \implies X_2 = 56 \)[/tex]
- This line is horizontal at [tex]\( X_2 = 56 \)[/tex].
3. Identify the Feasible Region:
The feasible region is bounded by the lines plotted above and is in the first quadrant since [tex]\( X_1 \)[/tex] and [tex]\( X_2 \)[/tex] are non-negative.
- [tex]\( X_1 = 60 \)[/tex]
- [tex]\( X_2 = 56 \)[/tex]
- [tex]\( 4X_1 + 6X_2 = 360 \)[/tex]
4. Determine the Corner Points:
The feasible region is defined by the intersection of the constraints. The key points of intersection (corner points) include:
- Intersection of [tex]\( 4X_1 + 6X_2 = 360 \)[/tex] and [tex]\( 3X_1 = 180 \)[/tex]:
- Substitute [tex]\( X_1 = 60 \)[/tex] into [tex]\( 4X_1 + 6X_2 = 360 \)[/tex]:
[tex]\[ 4(60) + 6X_2 = 360 \][/tex]
[tex]\[ 240 + 6X_2 = 360 \][/tex]
[tex]\[ 6X_2 = 120 \implies X_2 = 20 \][/tex]
- So, intersection point is [tex]\( (60, 20) \)[/tex]
- Intersection of [tex]\( 4X_1 + 6X_2 = 360 \)[/tex] and [tex]\( 5X_2 = 280 \)[/tex]:
- Substitute [tex]\( X_2 = 56 \)[/tex] into [tex]\( 4X_1 + 6X_2 = 360 \)[/tex]:
[tex]\[ 4X_1 + 6(56) = 360 \][/tex]
[tex]\[ 4X_1 + 336 = 360 \][/tex]
[tex]\[ 4X_1 = 24 \implies X_1 = 6 \][/tex]
- So, intersection point is [tex]\( (6, 56) \)[/tex]
- Intersection of [tex]\( X_1 = 60 \)[/tex] and [tex]\( X_2 = 0 \)[/tex]:
- Point is [tex]\( (60, 0) \)[/tex]
- Intersection of [tex]\( X_1 = 0 \)[/tex] and [tex]\( X_2 = 56 \)[/tex]:
- Point is [tex]\( (0, 56) \)[/tex]
5. Evaluate [tex]\( Z \)[/tex] at Each Corner Point:
[tex]\[ \begin{aligned} &\text{At } (60, 20): & Z &= 15(60) - 10(20) = 900 - 200 = 700\\ &\text{At } (6, 56): & Z &= 15(6) - 10(56) = 90 - 560 = -470\\ &\text{At } (60, 0): & Z &= 15(60) - 10(0) = 900\\ &\text{At } (0, 56): & Z &= 15(0) - 10(56) = 0 - 560 = -560\\ \end{aligned} \][/tex]
6. Conclusion:
The maximum value of [tex]\( Z \)[/tex] occurs at the point [tex]\( (60, 0) \)[/tex] with:
[tex]\[ \begin{aligned} X_1 & = 60\\ X_2 & = 0\\ Z & = 900 \end{aligned} \][/tex]
Hence, the optimal solution is [tex]\( X_1 = 60 \)[/tex], [tex]\( X_2 = 0 \)[/tex] and the maximum value of [tex]\( Z \)[/tex] is 900.
We appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Find precise solutions at IDNLearn.com. Thank you for trusting us with your queries, and we hope to see you again.