IDNLearn.com makes it easy to find precise answers to your specific questions. Our platform offers reliable and detailed answers, ensuring you have the information you need.
Sagot :
To find the derivative of the function given by the integral,
[tex]\[ f(x) = \int_{-3}^{x^4} \sqrt{t} \cos(t^2) \, dt, \][/tex]
we can use the Leibniz rule for differentiating an integral with variable limits of integration.
First, let us state the Leibniz rule:
If [tex]\( g(x) \)[/tex] and [tex]\( h(x) \)[/tex] are continuous and differentiable functions, and [tex]\( F(t) \)[/tex] is a continuous function, then
[tex]\[ \frac{d}{dx} \left( \int_{g(x)}^{h(x)} F(t) \, dt \right) = F(h(x)) \cdot h'(x) - F(g(x)) \cdot g'(x). \][/tex]
Here, [tex]\( g(x) = -3 \)[/tex] and [tex]\( h(x) = x^4 \)[/tex]. The integrand [tex]\( F(t) = \sqrt{t} \cos(t^2) \)[/tex].
Applying the Leibniz rule:
1. Evaluate [tex]\( F(t) = \sqrt{t} \cos(t^2) \)[/tex] at the upper limit [tex]\( h(x) = x^4 \)[/tex]:
[tex]\[ F(x^4) = \sqrt{x^4} \cos((x^4)^2) = x^2 \cos(x^8). \][/tex]
2. Multiply by the derivative of the upper limit [tex]\( h(x) \)[/tex]:
[tex]\[ h'(x) = \frac{d}{dx} (x^4) = 4x^3. \][/tex]
3. Evaluate [tex]\( F(t) = \sqrt{t} \cos(t^2) \)[/tex] at the lower limit [tex]\( g(x) = -3 \)[/tex]:
[tex]\[ F(-3) = \sqrt{-3} \cos((-3)^2) = \sqrt{-3} \cos(9) = i\sqrt{3} \cos(9). \][/tex]
(Note: Because [tex]\(\sqrt{-3}\)[/tex] introduces an imaginary component, we have replaced it with [tex]\(i\sqrt{3}\)[/tex], considering that [tex]\(i\)[/tex] is the imaginary unit).
4. Multiply by the derivative of the lower limit [tex]\( g(x) \)[/tex]:
[tex]\[ g'(x) = \frac{d}{dx} (-3) = 0. \][/tex]
Putting it all together:
[tex]\[ f'(x) = F(x^4) \cdot h'(x) - F(-3) \cdot g'(x). \][/tex]
[tex]\[ f'(x) = (x^2 \cos(x^8)) (4x^3) - (i\sqrt{3} \cos(9)) \cdot 0. \][/tex]
[tex]\[ f'(x) = 4x^5 \cos(x^8). \][/tex]
Hence, the derivative of the function [tex]\( f(x) \)[/tex] with respect to [tex]\( x \)[/tex] is:
[tex]\[ f'(x) = 4x^5 \cos(x^8). \][/tex]
[tex]\[ f(x) = \int_{-3}^{x^4} \sqrt{t} \cos(t^2) \, dt, \][/tex]
we can use the Leibniz rule for differentiating an integral with variable limits of integration.
First, let us state the Leibniz rule:
If [tex]\( g(x) \)[/tex] and [tex]\( h(x) \)[/tex] are continuous and differentiable functions, and [tex]\( F(t) \)[/tex] is a continuous function, then
[tex]\[ \frac{d}{dx} \left( \int_{g(x)}^{h(x)} F(t) \, dt \right) = F(h(x)) \cdot h'(x) - F(g(x)) \cdot g'(x). \][/tex]
Here, [tex]\( g(x) = -3 \)[/tex] and [tex]\( h(x) = x^4 \)[/tex]. The integrand [tex]\( F(t) = \sqrt{t} \cos(t^2) \)[/tex].
Applying the Leibniz rule:
1. Evaluate [tex]\( F(t) = \sqrt{t} \cos(t^2) \)[/tex] at the upper limit [tex]\( h(x) = x^4 \)[/tex]:
[tex]\[ F(x^4) = \sqrt{x^4} \cos((x^4)^2) = x^2 \cos(x^8). \][/tex]
2. Multiply by the derivative of the upper limit [tex]\( h(x) \)[/tex]:
[tex]\[ h'(x) = \frac{d}{dx} (x^4) = 4x^3. \][/tex]
3. Evaluate [tex]\( F(t) = \sqrt{t} \cos(t^2) \)[/tex] at the lower limit [tex]\( g(x) = -3 \)[/tex]:
[tex]\[ F(-3) = \sqrt{-3} \cos((-3)^2) = \sqrt{-3} \cos(9) = i\sqrt{3} \cos(9). \][/tex]
(Note: Because [tex]\(\sqrt{-3}\)[/tex] introduces an imaginary component, we have replaced it with [tex]\(i\sqrt{3}\)[/tex], considering that [tex]\(i\)[/tex] is the imaginary unit).
4. Multiply by the derivative of the lower limit [tex]\( g(x) \)[/tex]:
[tex]\[ g'(x) = \frac{d}{dx} (-3) = 0. \][/tex]
Putting it all together:
[tex]\[ f'(x) = F(x^4) \cdot h'(x) - F(-3) \cdot g'(x). \][/tex]
[tex]\[ f'(x) = (x^2 \cos(x^8)) (4x^3) - (i\sqrt{3} \cos(9)) \cdot 0. \][/tex]
[tex]\[ f'(x) = 4x^5 \cos(x^8). \][/tex]
Hence, the derivative of the function [tex]\( f(x) \)[/tex] with respect to [tex]\( x \)[/tex] is:
[tex]\[ f'(x) = 4x^5 \cos(x^8). \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.