IDNLearn.com provides a reliable platform for finding accurate and timely answers. Our platform provides accurate, detailed responses to help you navigate any topic with ease.

Graph the feasible region for the following system of inequalities by drawing a polygon around the feasible region. Click to set the corner points.

[tex]\[
\left\{
\begin{array}{ll}
3y + 4x & \geq 24 \\
3y + 2x & \geq 16 \\
y + x & \geq 7 \\
y + x & \leq 8 \\
x & \geq 0 \\
y & \geq 0
\end{array}
\right.
\][/tex]


Sagot :

To graph the feasible region for the given system of inequalities, follow these steps methodically:

1. Convert the inequalities to their respective equations:

[tex]\( 3y + 4x = 24 \)[/tex]
[tex]\( 3y + 2x = 16 \)[/tex]
[tex]\( y + x = 7 \)[/tex]
[tex]\( y + x = 8 \)[/tex]
[tex]\( x = 0 \)[/tex]
[tex]\( y = 0 \)[/tex]

2. Find the intersection points of these lines to determine the corners of the feasible region:

- Solve for intersection points between pairs of lines.

3. Check each intersection point to see if it satisfies all the inequalities.

- If it does, it's a corner of the feasible region.

### Finding Intersection Points

1. Intersection of [tex]\( 3y + 4x = 24 \)[/tex] and [tex]\( 3y + 2x = 16 \)[/tex]:

[tex]\[ \begin{cases} 3y + 4x = 24 \\ 3y + 2x = 16 \end{cases} \][/tex]

Subtract the second equation from the first:

[tex]\[ (3y + 4x) - (3y + 2x) = 24 - 16 \][/tex]
[tex]\[ 2x = 8 \][/tex]
[tex]\[ x = 4 \][/tex]

Substituting [tex]\( x = 4 \)[/tex] into [tex]\( 3y + 2x = 16 \)[/tex]:

[tex]\[ 3y + 2(4) = 16 \][/tex]
[tex]\[ 3y + 8 = 16 \][/tex]
[tex]\[ 3y = 8 \][/tex]
[tex]\[ y = \frac{8}{3} \][/tex]

Intersection Point: [tex]\((4, \frac{8}{3})\)[/tex]

2. Intersection of [tex]\( y + x = 7 \)[/tex] and [tex]\( y + x = 8 \)[/tex]:

These lines are parallel and will never intersect. So, there is no intersection point.

3. Intersection of [tex]\( y + x = 7 \)[/tex] and [tex]\( 3y + 4x = 24 \)[/tex]:

Substitute [tex]\( y = 7 - x \)[/tex] into [tex]\( 3y + 4x = 24 \)[/tex]:

[tex]\[ 3(7 - x) + 4x = 24 \][/tex]
[tex]\[ 21 - 3x + 4x = 24 \][/tex]
[tex]\[ 21 + x = 24 \][/tex]
[tex]\[ x = 3 \][/tex]

Substitute [tex]\( x = 3 \)[/tex] into [tex]\( y + x = 7 \)[/tex]:

[tex]\[ y + 3 = 7 \][/tex]
[tex]\[ y = 4 \][/tex]

Intersection Point: [tex]\((3, 4)\)[/tex]

4. Intersection of [tex]\( y + x = 8 \)[/tex] and [tex]\( 3y + 4x = 24 \)[/tex]:

Substitute [tex]\( y = 8 - x \)[/tex] into [tex]\( 3y + 4x = 24 \)[/tex]:

[tex]\[ 3(8 - x) + 4x = 24 \][/tex]
[tex]\[ 24 - 3x + 4x = 24 \][/tex]
[tex]\[ x = 0 \][/tex]

Substitute [tex]\( x = 0 \)[/tex] into [tex]\( y + x = 8 \)[/tex]:

[tex]\[ y = 8 \][/tex]

Intersection Point: [tex]\((0, 8)\)[/tex]

5. Intersection of [tex]\( y + x = 7 \)[/tex] and [tex]\( y + x = 8 \)[/tex]:

As noted earlier, these lines are parallel.

6. Intersection of [tex]\( y + x = 7 \)[/tex] and [tex]\( x = 0 \)[/tex]:

Substitute [tex]\( x = 0 \)[/tex] into [tex]\( y + x = 7 \)[/tex]:

[tex]\[ y = 7 \][/tex]

Intersection Point: [tex]\((0, 7)\)[/tex]

7. Intersection of [tex]\( y + x = 8 \)[/tex] and [tex]\( x = 0 \)[/tex]:

Substitute [tex]\( x = 0 \)[/tex] into [tex]\( y + x = 8 \)[/tex]:

[tex]\[ y = 8 \][/tex]

Intersection Point: [tex]\((0, 8)\)[/tex]

8. Intersection of [tex]\( y + x = 7 \)[/tex] and [tex]\( y = 0 \)[/tex]:

Substitute [tex]\( y = 0 \)[/tex] into [tex]\( y + x = 7 \)[/tex]:

[tex]\[ x = 7 \][/tex]

Intersection Point: [tex]\((7, 0)\)[/tex]

9. Intersection of [tex]\( y + x = 8 \)[/tex] and [tex]\( y = 0 \)[/tex]:

Substitute [tex]\( y = 0 \)[/tex] into [tex]\( y + x = 8 \)[/tex]:

[tex]\[ x = 8 \][/tex]

Intersection Point: [tex]\((8, 0)\)[/tex]

The key points to consider are:
- [tex]\((4, \frac{8}{3})\)[/tex]
- [tex]\((3, 4)\)[/tex]
- [tex]\((0, 8)\)[/tex]
- [tex]\((0, 7)\)[/tex]
- [tex]\((7, 0)\)[/tex]
- [tex]\((8, 0)\)[/tex]

### Feasibility Check for each Intersection:
- Point [tex]\((4, \frac{8}{3}) \Rightarrow x = 4, y = \frac{8}{3}\)[/tex]:
[tex]\[ y = \frac{8}{3}, x = 4 \][/tex]
All inequalities checked:
[tex]\[ \begin{cases} 3y + 4x = 24 \geq 24 & True \\ 3y + 2x = 16 \geq 16 & True \\ x + y = 7 & y = \frac{8}{3}, x = 4 = \frac{20}{3}, \rightarrow False \end{cases} \][/tex]
- Therefore, this point is not feasible.

### Feasible Vertices:
[tex]\[ (3, 4), (0, 8), (0, 7), (7,0) \][/tex]

Thus, the feasible region is a polygon with vertices at (3,4), (0,8), (0,7), (7,0).

To manually graph this region:
1. Draw the axes and plot the points.
2. Connect points to outline the polygon.

To determine the region partition:
1. Shade above lines [tex]\(3y + 4x = 24\)[/tex] and [tex]\(3y + 2x = 16\)[/tex]
2. Shade the intersection partition below [tex]\(ry= x-y =7,x+y \leq 8\)[/tex].

These vertex points outline where feasible region lies. {Manually graph this region from shaded regions and intersection polygons}.