Join the IDNLearn.com community and get your questions answered by knowledgeable individuals. Ask your questions and receive reliable, detailed answers from our dedicated community of experts.
Sagot :
To solve the problem, we need to find the first four terms in the expansion of [tex]\(\left(1 - \frac{x}{10}\right)^6\)[/tex]. Then, we'll substitute [tex]\(x = 0.1\)[/tex] to approximate [tex]\((0.99)^6\)[/tex] and determine the degree of accuracy of our approximation.
Step 1: Binomial expansion
We can use the binomial theorem to expand [tex]\(\left(1 - \frac{x}{10}\right)^6\)[/tex]. According to the binomial theorem, the expansion is:
[tex]\[ \left(1 - \frac{x}{10}\right)^6 = \sum_{n=0}^{\infty} \binom{6}{n} \left(-\frac{x}{10}\right)^n \][/tex]
The first four terms (for [tex]\(n = 0, 1, 2, 3\)[/tex]) of this expansion are:
1. For [tex]\(n = 0\)[/tex]:
[tex]\[ \binom{6}{0} \left(-\frac{x}{10}\right)^0 = 1 \][/tex]
2. For [tex]\(n = 1\)[/tex]:
[tex]\[ \binom{6}{1} \left(-\frac{x}{10}\right)^1 = 6 \left(-\frac{x}{10}\right) = -\frac{6x}{10} = -0.6x \][/tex]
3. For [tex]\(n = 2\)[/tex]:
[tex]\[ \binom{6}{2} \left(-\frac{x}{10}\right)^2 = 15 \left(\frac{x}{10}\right)^2 = 15 \left(\frac{x^2}{100}\right) = 0.15x^2 \][/tex]
4. For [tex]\(n = 3\)[/tex]:
[tex]\[ \binom{6}{3} \left(-\frac{x}{10}\right)^3 = 20 \left(-\frac{x}{10}\right)^3 = -20 \left(\frac{x^3}{1000}\right) = -0.02x^3 \][/tex]
Therefore, the first four terms in the expansion of [tex]\(\left(1 - \frac{x}{10}\right)^6\)[/tex] are:
[tex]\[ 1 - 0.6x + 0.15x^2 - 0.02x^3 \][/tex]
Step 2: Approximate [tex]\((0.99)^6\)[/tex]
To approximate [tex]\((0.99)^6\)[/tex], we substitute [tex]\( x = 0.1 \)[/tex] (since [tex]\(0.99 = 1 - 0.01 = 1 - \frac{0.1}{10}\)[/tex]) into the expansion:
[tex]\[ (0.99)^6 \approx 1 - 0.6(0.1) + 0.15(0.1^2) - 0.02(0.1^3) \][/tex]
Calculate each term:
[tex]\[ 1 - 0.6 \cdot 0.1 = 1 - 0.06 = 0.94 \][/tex]
[tex]\[ 0.15 \cdot (0.1^2) = 0.15 \cdot 0.01 = 0.0015 \][/tex]
[tex]\[ -0.02 \cdot (0.1^3) = -0.02 \cdot 0.001 = -0.00002 \][/tex]
Sum these terms to get the approximate value:
[tex]\[ (0.99)^6 \approx 0.94 + 0.0015 - 0.00002 = 0.94148 \][/tex]
Step 3: Calculate the degree of accuracy
Next, we find the actual value of [tex]\((0.99)^6\)[/tex] using a calculator:
[tex]\[ (0.99)^6 \approx 0.941480149401 \][/tex]
Finally, compute the degree of accuracy of our approximation by finding the absolute difference between the actual value and the approximate value:
[tex]\[ \text{Degree of accuracy} = \left| 0.941480149401 - 0.94148 \right| = 0.000000149401 = 1.4940100001581413 \times 10^{-7} \][/tex]
Thus, the degree of accuracy of our approximation is [tex]\(1.4940100001581413 \times 10^{-7}\)[/tex].
Step 1: Binomial expansion
We can use the binomial theorem to expand [tex]\(\left(1 - \frac{x}{10}\right)^6\)[/tex]. According to the binomial theorem, the expansion is:
[tex]\[ \left(1 - \frac{x}{10}\right)^6 = \sum_{n=0}^{\infty} \binom{6}{n} \left(-\frac{x}{10}\right)^n \][/tex]
The first four terms (for [tex]\(n = 0, 1, 2, 3\)[/tex]) of this expansion are:
1. For [tex]\(n = 0\)[/tex]:
[tex]\[ \binom{6}{0} \left(-\frac{x}{10}\right)^0 = 1 \][/tex]
2. For [tex]\(n = 1\)[/tex]:
[tex]\[ \binom{6}{1} \left(-\frac{x}{10}\right)^1 = 6 \left(-\frac{x}{10}\right) = -\frac{6x}{10} = -0.6x \][/tex]
3. For [tex]\(n = 2\)[/tex]:
[tex]\[ \binom{6}{2} \left(-\frac{x}{10}\right)^2 = 15 \left(\frac{x}{10}\right)^2 = 15 \left(\frac{x^2}{100}\right) = 0.15x^2 \][/tex]
4. For [tex]\(n = 3\)[/tex]:
[tex]\[ \binom{6}{3} \left(-\frac{x}{10}\right)^3 = 20 \left(-\frac{x}{10}\right)^3 = -20 \left(\frac{x^3}{1000}\right) = -0.02x^3 \][/tex]
Therefore, the first four terms in the expansion of [tex]\(\left(1 - \frac{x}{10}\right)^6\)[/tex] are:
[tex]\[ 1 - 0.6x + 0.15x^2 - 0.02x^3 \][/tex]
Step 2: Approximate [tex]\((0.99)^6\)[/tex]
To approximate [tex]\((0.99)^6\)[/tex], we substitute [tex]\( x = 0.1 \)[/tex] (since [tex]\(0.99 = 1 - 0.01 = 1 - \frac{0.1}{10}\)[/tex]) into the expansion:
[tex]\[ (0.99)^6 \approx 1 - 0.6(0.1) + 0.15(0.1^2) - 0.02(0.1^3) \][/tex]
Calculate each term:
[tex]\[ 1 - 0.6 \cdot 0.1 = 1 - 0.06 = 0.94 \][/tex]
[tex]\[ 0.15 \cdot (0.1^2) = 0.15 \cdot 0.01 = 0.0015 \][/tex]
[tex]\[ -0.02 \cdot (0.1^3) = -0.02 \cdot 0.001 = -0.00002 \][/tex]
Sum these terms to get the approximate value:
[tex]\[ (0.99)^6 \approx 0.94 + 0.0015 - 0.00002 = 0.94148 \][/tex]
Step 3: Calculate the degree of accuracy
Next, we find the actual value of [tex]\((0.99)^6\)[/tex] using a calculator:
[tex]\[ (0.99)^6 \approx 0.941480149401 \][/tex]
Finally, compute the degree of accuracy of our approximation by finding the absolute difference between the actual value and the approximate value:
[tex]\[ \text{Degree of accuracy} = \left| 0.941480149401 - 0.94148 \right| = 0.000000149401 = 1.4940100001581413 \times 10^{-7} \][/tex]
Thus, the degree of accuracy of our approximation is [tex]\(1.4940100001581413 \times 10^{-7}\)[/tex].
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Thank you for choosing IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more solutions.