Discover how IDNLearn.com can help you find the answers you need quickly and easily. Discover detailed answers to your questions with our extensive database of expert knowledge.

Consider the following hypothesis test:

[tex]\[
\begin{array}{l}
H_0: \mu_1 - \mu_2 \leq 0 \\
H_a: \mu_1 - \mu_2 \ \textgreater \ 0
\end{array}
\][/tex]

The following results are for two independent samples taken from the two populations:

[tex]\[
\begin{array}{ll}
\text{Sample 1} & \text{Sample 2} \\
n_1 = 40 & n_2 = 45 \\
\bar{x}_1 = 25.1 & \bar{x}_2 = 23.0 \\
\sigma_1 = 4.8 & \sigma_2 = 6.0
\end{array}
\][/tex]

a. What is the value of the test statistic (round to 2 decimals)?
[tex]\[
\square
\][/tex]

b. What is the [tex]$p$[/tex]-value (round to 4 decimals)? Use [tex]$z$[/tex]-value rounded to 2 decimal places.
[tex]\[
\square
\][/tex]

c. With [tex]$\alpha = 0.05$[/tex], what is your hypothesis testing conclusion?
[tex]\[
\text{p-value is } \square \quad \text{Select your answer:} \quad H_0 \text{ or } H_a
\][/tex]


Sagot :

Certainly! Let's step through each part of the hypothesis test with the given information:

### Given Data:
- Sample sizes:
[tex]\( n_1 = 40 \)[/tex]
[tex]\( n_2 = 45 \)[/tex]

- Sample means:
[tex]\( \bar{x}_1 = 25.1 \)[/tex]
[tex]\( \bar{x}_2 = 23.0 \)[/tex]

- Population standard deviations:
[tex]\( \sigma_1 = 4.8 \)[/tex]
[tex]\( \sigma_2 = 6.0 \)[/tex]

- Significance level:
[tex]\( \alpha = 0.05 \)[/tex]

### Hypothesis:
[tex]\[ \begin{aligned} H_0: \mu_1 - \mu_2 \leq 0 \\ H_a: \mu_1 - \mu_2 > 0 \end{aligned} \][/tex]

### a. Calculation of the Test Statistic (z-value):
The test statistic (z-value) for two independent samples can be calculated using the formula:
[tex]\[ z = \frac{\bar{x}_1 - \bar{x}_2}{\sqrt{\left(\frac{\sigma_1^2}{n_1}\right) + \left(\frac{\sigma_2^2}{n_2}\right)}} \][/tex]

From the given data:
[tex]\[ \sigma_1 = 4.8, \quad n_1 = 40, \quad \sigma_2 = 6.0, \quad n_2 = 45 \][/tex]

First, calculate the standard error (SE):
[tex]\[ SE = \sqrt{\left(\frac{\sigma_1^2}{n_1}\right) + \left(\frac{\sigma_2^2}{n_2}\right)} = \sqrt{\left(\frac{4.8^2}{40}\right) + \left(\frac{6.0^2}{45}\right)} \][/tex]

Then, calculate:
[tex]\[ z = \frac{25.1 - 23.0}{SE} \][/tex]

Using this formula, we obtain:
[tex]\[ z \approx 1.79 \][/tex]

So, the value of the test statistic is:
[tex]\[ \boxed{1.79} \][/tex]

### b. Calculation of the p-value:
The p-value can be determined by finding the area to the right of the z-value in the standard normal distribution.

For [tex]\( z = 1.79 \)[/tex], the p-value is the area to the right of [tex]\( z = 1.79 \)[/tex].

The p-value comes out to be approximately:
[tex]\[ \boxed{0.0367} \][/tex]

### c. Hypothesis Testing Conclusion:
With [tex]\(\alpha = 0.05\)[/tex]:
- We compare the p-value to the significance level [tex]\(\alpha\)[/tex]:
- If [tex]\( p \text{-value} < \alpha \)[/tex], reject [tex]\( H_0 \)[/tex].
- If [tex]\( p \text{-value} \geq \alpha \)[/tex], do not reject [tex]\( H_0 \)[/tex].

In this case:
[tex]\[ p \text{-value} = 0.0367 < 0.05 \][/tex]

Since the p-value is less than the significance level [tex]\( \alpha \)[/tex], we reject the null hypothesis [tex]\( H_0 \)[/tex].

Thus, our conclusion with [tex]\( \alpha = 0.05 \)[/tex] is:
[tex]\[ \boxed{\text{Reject } H_0} \][/tex]