IDNLearn.com offers a unique blend of expert answers and community insights. Get the information you need quickly and accurately with our reliable and thorough Q&A platform.
Sagot :
Certainly! Let’s examine the given series and determine the total sum step by step.
The series in question is given as:
[tex]\[ S = \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{x}{13}\right) + \tan^{-1}\left(\frac{1}{21}\right) + \ldots \][/tex]
To solve this, let's assume the series follows a particular pattern in its terms. Often, in such problems, each term takes the form [tex]\(\tan^{-1}\left(\frac{1}{2n+1}\right)\)[/tex] for successive values of [tex]\(n\)[/tex].
Let’s compute a few initial values to understand the pattern better:
1. First term: [tex]\(\tan^{-1}(1/1) = \tan^{-1}(1)\)[/tex]
2. Second term: [tex]\(\tan^{-1}(1/3)\)[/tex]
3. Third term: [tex]\(\tan^{-1}(1/5)\)[/tex]
We use the identity for the sum of arctangents:
[tex]\[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \][/tex]
Applying this step-by-step:
### Step 1: Sum of the first two terms
[tex]\[ \tan^{-1}(1) + \tan^{-1}(1/3) \][/tex]
For the specific values:
[tex]\[ a = 1, \quad b = 1/3 \][/tex]
Using the identity:
[tex]\[ \tan^{-1}(1) + \tan^{-1}(1/3) = \tan^{-1}\left(\frac{1 + 1/3}{1 - 1 \cdot 1/3}\right) = \tan^{-1}\left(\frac{1.3333}{0.6667}\right) = 2.0 \][/tex]
Hence:
[tex]\[ \tan^{-1}(1) + \tan^{-1}(1/3) \approx \tan^{-1}(2) \][/tex]
### Step 2: Adding the third term
[tex]\[ \tan^{-1}(2) + \tan^{-1}(1/5) \][/tex]
For the specific values:
[tex]\[ a = 2, \quad b = 1/5 \][/tex]
Using the identity:
[tex]\[ \tan^{-1}(2) + \tan^{-1}(1/5) = \tan^{-1}\left(\frac{2 + 1/5}{1 - 2 \cdot 1/5}\right) = \tan^{-1}\left(\frac{2.2}{0.6}\right) \][/tex]
Hence:
[tex]\[ \tan^{-1}(2) + \tan^{-1}(1/5) \approx \tan^{-1}(3.6667) \][/tex]
### Infinite Sum Consideration
As the number of terms increases, the series converges. The infinite series [tex]\(\sum_{n=0}^\infty \tan^{-1}\left(\frac{1}{2n+1}\right)\)[/tex] is known to converge to [tex]\(\frac{\pi}{4}\)[/tex].
Thus, the summation [tex]\( S \)[/tex] converges to:
[tex]\[ S = \frac{\pi}{4} \][/tex]
### Conclusion
Finally, taking the tangent of [tex]\(S\)[/tex]:
[tex]\[ \tan(S) = \tan\left(\frac{\pi}{4}\right) \][/tex]
We know:
[tex]\[ \tan\left(\frac{\pi}{4}\right) = 1 \][/tex]
Therefore:
[tex]\[ \tan(S) = 1 \][/tex]
The series in question is given as:
[tex]\[ S = \tan^{-1}\left(\frac{1}{3}\right) + \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{x}{13}\right) + \tan^{-1}\left(\frac{1}{21}\right) + \ldots \][/tex]
To solve this, let's assume the series follows a particular pattern in its terms. Often, in such problems, each term takes the form [tex]\(\tan^{-1}\left(\frac{1}{2n+1}\right)\)[/tex] for successive values of [tex]\(n\)[/tex].
Let’s compute a few initial values to understand the pattern better:
1. First term: [tex]\(\tan^{-1}(1/1) = \tan^{-1}(1)\)[/tex]
2. Second term: [tex]\(\tan^{-1}(1/3)\)[/tex]
3. Third term: [tex]\(\tan^{-1}(1/5)\)[/tex]
We use the identity for the sum of arctangents:
[tex]\[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \][/tex]
Applying this step-by-step:
### Step 1: Sum of the first two terms
[tex]\[ \tan^{-1}(1) + \tan^{-1}(1/3) \][/tex]
For the specific values:
[tex]\[ a = 1, \quad b = 1/3 \][/tex]
Using the identity:
[tex]\[ \tan^{-1}(1) + \tan^{-1}(1/3) = \tan^{-1}\left(\frac{1 + 1/3}{1 - 1 \cdot 1/3}\right) = \tan^{-1}\left(\frac{1.3333}{0.6667}\right) = 2.0 \][/tex]
Hence:
[tex]\[ \tan^{-1}(1) + \tan^{-1}(1/3) \approx \tan^{-1}(2) \][/tex]
### Step 2: Adding the third term
[tex]\[ \tan^{-1}(2) + \tan^{-1}(1/5) \][/tex]
For the specific values:
[tex]\[ a = 2, \quad b = 1/5 \][/tex]
Using the identity:
[tex]\[ \tan^{-1}(2) + \tan^{-1}(1/5) = \tan^{-1}\left(\frac{2 + 1/5}{1 - 2 \cdot 1/5}\right) = \tan^{-1}\left(\frac{2.2}{0.6}\right) \][/tex]
Hence:
[tex]\[ \tan^{-1}(2) + \tan^{-1}(1/5) \approx \tan^{-1}(3.6667) \][/tex]
### Infinite Sum Consideration
As the number of terms increases, the series converges. The infinite series [tex]\(\sum_{n=0}^\infty \tan^{-1}\left(\frac{1}{2n+1}\right)\)[/tex] is known to converge to [tex]\(\frac{\pi}{4}\)[/tex].
Thus, the summation [tex]\( S \)[/tex] converges to:
[tex]\[ S = \frac{\pi}{4} \][/tex]
### Conclusion
Finally, taking the tangent of [tex]\(S\)[/tex]:
[tex]\[ \tan(S) = \tan\left(\frac{\pi}{4}\right) \][/tex]
We know:
[tex]\[ \tan\left(\frac{\pi}{4}\right) = 1 \][/tex]
Therefore:
[tex]\[ \tan(S) = 1 \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.