Find the best solutions to your problems with the help of IDNLearn.com's expert users. Our experts provide prompt and accurate answers to help you make informed decisions on any topic.
Sagot :
To solve the following system of equations using the inverse matrix method:
[tex]\[ \frac{4}{x} + \frac{3}{y} = 1 \][/tex]
[tex]\[ \frac{3}{x} - \frac{2}{y} = \frac{1}{24} \][/tex]
First, let's rewrite these equations in a more standard linear system form. Suppose we introduce new variables for the reciprocals so that:
[tex]\[ u = \frac{1}{x} \quad \text{and} \quad v = \frac{1}{y} \][/tex]
In terms of [tex]\( u \)[/tex] and [tex]\( v \)[/tex], the system of equations is transformed to:
[tex]\[ 4u + 3v = 1 \][/tex]
[tex]\[ 3u - 2v = \frac{1}{24} \][/tex]
We can represent this linear system in matrix form [tex]\( A \mathbf{u} = \mathbf{b} \)[/tex], where:
[tex]\[ A = \begin{pmatrix} 4 & 3 \\ 3 & -2 \end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix} u \\ v \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ \frac{1}{24} \end{pmatrix} \][/tex]
To solve for [tex]\(\mathbf{u}\)[/tex], we need to find the inverse of matrix [tex]\(A\)[/tex] (denoted as [tex]\( A^{-1} \)[/tex]) and then multiply it by [tex]\( \mathbf{b} \)[/tex]. We have:
[tex]\[ \mathbf{u} = A^{-1} \mathbf{b} \][/tex]
The result of this calculation gives us the values of [tex]\( u \)[/tex] and [tex]\( v \)[/tex].
The solutions for [tex]\( u \)[/tex] and [tex]\( v \)[/tex] are:
[tex]\[ u = 0.125 \quad \text{and} \quad v = 0.16666667 \][/tex]
This means:
[tex]\[ \frac{1}{x} = 0.125 \quad \text{and} \quad \frac{1}{y} = 0.16666667 \][/tex]
Therefore, solving for [tex]\( x \)[/tex] and [tex]\( y \)[/tex], we get:
[tex]\[ x = \frac{1}{0.125} = 8 \][/tex]
[tex]\[ y = \frac{1}{0.16666667} \approx 6 \][/tex]
Hence, the solution to the system of equations is:
[tex]\[ x = 8 \][/tex]
[tex]\[ y = 6 \][/tex]
[tex]\[ \frac{4}{x} + \frac{3}{y} = 1 \][/tex]
[tex]\[ \frac{3}{x} - \frac{2}{y} = \frac{1}{24} \][/tex]
First, let's rewrite these equations in a more standard linear system form. Suppose we introduce new variables for the reciprocals so that:
[tex]\[ u = \frac{1}{x} \quad \text{and} \quad v = \frac{1}{y} \][/tex]
In terms of [tex]\( u \)[/tex] and [tex]\( v \)[/tex], the system of equations is transformed to:
[tex]\[ 4u + 3v = 1 \][/tex]
[tex]\[ 3u - 2v = \frac{1}{24} \][/tex]
We can represent this linear system in matrix form [tex]\( A \mathbf{u} = \mathbf{b} \)[/tex], where:
[tex]\[ A = \begin{pmatrix} 4 & 3 \\ 3 & -2 \end{pmatrix}, \quad \mathbf{u} = \begin{pmatrix} u \\ v \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 1 \\ \frac{1}{24} \end{pmatrix} \][/tex]
To solve for [tex]\(\mathbf{u}\)[/tex], we need to find the inverse of matrix [tex]\(A\)[/tex] (denoted as [tex]\( A^{-1} \)[/tex]) and then multiply it by [tex]\( \mathbf{b} \)[/tex]. We have:
[tex]\[ \mathbf{u} = A^{-1} \mathbf{b} \][/tex]
The result of this calculation gives us the values of [tex]\( u \)[/tex] and [tex]\( v \)[/tex].
The solutions for [tex]\( u \)[/tex] and [tex]\( v \)[/tex] are:
[tex]\[ u = 0.125 \quad \text{and} \quad v = 0.16666667 \][/tex]
This means:
[tex]\[ \frac{1}{x} = 0.125 \quad \text{and} \quad \frac{1}{y} = 0.16666667 \][/tex]
Therefore, solving for [tex]\( x \)[/tex] and [tex]\( y \)[/tex], we get:
[tex]\[ x = \frac{1}{0.125} = 8 \][/tex]
[tex]\[ y = \frac{1}{0.16666667} \approx 6 \][/tex]
Hence, the solution to the system of equations is:
[tex]\[ x = 8 \][/tex]
[tex]\[ y = 6 \][/tex]
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. For clear and precise answers, choose IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.