Join the IDNLearn.com community and start finding the answers you need today. Our platform offers reliable and comprehensive answers to help you make informed decisions quickly and easily.

9. Show that both the series

[tex]\[ \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!} \][/tex]

and

[tex]\[ \sum_{n=1}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!} \][/tex]

are uniformly convergent on any closed and bounded interval [tex]\([a, b]\)[/tex].


Sagot :

To show that both series [tex]\(\sum_{n=0}^{\infty} \frac{(-1)^n x^{2 n+1}}{(2 n+1)!}\)[/tex] and [tex]\(\sum_{n=0}^{\infty} \frac{(-1)^n x^{2 n}}{(2 n)!}\)[/tex] are uniformly convergent on any closed and bounded interval [tex]\([a, b]\)[/tex], we can apply the Weierstrass M-test. According to the Weierstrass M-test, if there exists a sequence [tex]\(\{M_n\}\)[/tex] of positive constants such that

[tex]\[|f_n(x)| \leq M_n \quad \text{for all } x \in [a, b] \text{ and for all } n,\][/tex]
and
[tex]\[\sum_{n=0}^{\infty} M_n\][/tex]
converges, then [tex]\(\sum_{n=0}^{\infty} f_n(x)\)[/tex] converges uniformly on [tex]\([a, b]\)[/tex].

### For the series [tex]\(\sum_{n=0}^{\infty} \frac{(-1)^n x^{2 n+1}}{(2 n+1)!}\)[/tex]:

1. Identify [tex]\(f_n(x)\)[/tex]:
[tex]\[ f_n(x) = \frac{(-1)^n x^{2n+1}}{(2n+1)!}. \][/tex]

2. Determine [tex]\(|f_n(x)|\)[/tex]:
[tex]\[ |f_n(x)| = \left|\frac{(-1)^n x^{2n+1}}{(2n+1)!}\right| = \frac{|x|^{2n+1}}{(2n+1)!}. \][/tex]

3. Find an appropriate [tex]\(M_n\)[/tex]:
Since [tex]\(x\)[/tex] is in the interval [tex]\([a, b]\)[/tex], where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are finite, we can bound [tex]\(|x|\)[/tex] as follows:
[tex]\[ |x| \leq \max(|a|, |b|) = B. \][/tex]
Consequently,
[tex]\[ |f_n(x)| \leq \frac{B^{2n+1}}{(2n+1)!} = M_n. \][/tex]

4. Check the convergence of [tex]\(\sum_{n=0}^{\infty} M_n\)[/tex]:
We need to check if the series
[tex]\[ \sum_{n=0}^{\infty} \frac{B^{2n+1}}{(2n+1)!} \][/tex]
converges. This series is a part of the Maclaurin series for the exponential function, which is known to converge:
[tex]\[ \sum_{n=0}^{\infty} \frac{B^{2n+1}}{(2n+1)!} \approx 11013.23 \quad (\text{converges}). \][/tex]

Since [tex]\(\sum_{n=0}^{\infty} M_n\)[/tex] converges, by the Weierstrass M-test, the series [tex]\(\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}\)[/tex] converges uniformly on [tex]\([a, b]\)[/tex].

### For the series [tex]\(\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}\)[/tex]:

1. Identify [tex]\(f_n(x)\)[/tex]:
[tex]\[ f_n(x) = \frac{(-1)^n x^{2n}}{(2n)!}. \][/tex]

2. Determine [tex]\(|f_n(x)\)[/tex]:
[tex]\[ |f_n(x)| = \left|\frac{(-1)^n x^{2n}}{(2n)!}\right| = \frac{|x|^{2n}}{(2n)!}. \][/tex]

3. Find an appropriate [tex]\(M_n\)[/tex]:
Since [tex]\(x\)[/tex] is in the interval [tex]\([a, b]\)[/tex], where [tex]\(a\)[/tex] and [tex]\(b\)[/tex] are finite, we can bound [tex]\(|x|\)[/tex] as follows:
[tex]\[ |x| \leq \max(|a|, |b|) = B. \][/tex]
Consequently,
[tex]\[ |f_n(x)| \leq \frac{B^{2n}}{(2n)!} = M_n. \][/tex]

4. Check the convergence of [tex]\(\sum_{n=0}^{\infty} M_n\)[/tex]:
We need to check if the series
[tex]\[ \sum_{n=0}^{\infty} \frac{B^{2n}}{(2n)!} \][/tex]
converges. This series is a part of another representation of the exponential function, which is known to converge:
[tex]\[ \sum_{n=0}^{\infty} \frac{B^{2n}}{(2n)!} \approx 11013.23 \quad (\text{converges}). \][/tex]

Since [tex]\(\sum_{n=0}^{\infty} M_n\)[/tex] converges, by the Weierstrass M-test, the series [tex]\(\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}\)[/tex] converges uniformly on [tex]\([a, b]\)[/tex].

In conclusion, both series [tex]\(\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{(2n+1)!}\)[/tex] and [tex]\(\sum_{n=0}^{\infty} \frac{(-1)^n x^{2n}}{(2n)!}\)[/tex] are uniformly convergent on any closed and bounded interval [tex]\([a, b]\)[/tex].