Get personalized answers to your specific questions with IDNLearn.com. Discover reliable answers to your questions with our extensive database of expert knowledge.
Sagot :
### Detailed Solution
#### Part 6.3: Calculation of Percentage Purity of Carbon
Given:
- Mass of carbon sample, [tex]\( m_{\text{C sample}} = 37 \)[/tex] g
- Volume of [tex]\( CO_2 \)[/tex] produced, [tex]\( V_{CO_2} = 65 \)[/tex] dm³
- At STP (Standard Temperature and Pressure), 1 mole of any gas occupies 22.4 dm³
- Molecular weight of carbon, [tex]\( M_{\text{C}} = 12 \)[/tex] g/mol
Reaction:
[tex]\[ C (s) + O_2 (g) \rightarrow CO_2 (g) \][/tex]
Steps:
1. Calculate the number of moles of [tex]\( CO_2 \)[/tex] produced:
[tex]\[ \text{Moles of } CO_2 = \frac{V_{CO_2}}{22.4 \text{ dm}^3/\text{mol}} = \frac{65 \text{ dm}^3}{22.4 \text{ dm}^3/\text{mol}} \approx 2.9018 \text{ moles} \][/tex]
2. The reaction shows a 1:1 molar ratio between carbon and [tex]\( CO_2 \)[/tex]. Therefore, the moles of carbon required are equal to the moles of [tex]\( CO_2 \)[/tex] produced:
[tex]\[ \text{Moles of } C = \text{Moles of } CO_2 = 2.9018 \text{ moles} \][/tex]
3. Calculate the mass of pure carbon required (using its molar mass):
[tex]\[ \text{Mass of pure carbon} = \text{Moles of } C \times M_{\text{C}} = 2.9018 \text{ moles} \times 12 \text{ g/mol} \approx 34.8214 \text{ g} \][/tex]
4. Calculate the percentage purity of the carbon sample:
[tex]\[ \text{Percentage purity} = \left( \frac{\text{Mass of pure carbon}}{\text{Mass of carbon sample}} \right) \times 100 = \left( \frac{34.8214 \text{ g}}{37 \text{ g}} \right) \times 100 \approx 94.11\% \][/tex]
#### Part 6.4: Calculation of Percentage Yield for the Reaction
Given:
- Volume of [tex]\( H_2 \)[/tex] placed in-container, [tex]\( V_{H_2} = 22.5 \)[/tex] dm³
- Volume of [tex]\( N_2 \)[/tex] placed in-container, [tex]\( V_{N_2} = 30 \)[/tex] dm³
- Volume of [tex]\( NH_3 \)[/tex] produced, [tex]\( V_{NH_3} = 12 \)[/tex] dm³
Reaction:
[tex]\[ N_2 (g) + 3H_2 (g) \rightarrow 2NH_3 (g) \][/tex]
Steps:
1. Calculate the theoretical volume of [tex]\( NH_3 \)[/tex] that could be produced from [tex]\( H_2 \)[/tex]:
[tex]\[ \text{Theoretical } NH_3 \text{ from } H_2 = \frac{V_{H_2}}{3} \times 2 = \frac{22.5 \text{ dm}^3}{3} \times 2 = 15 \text{ dm}^3 \][/tex]
2. Calculate the theoretical volume of [tex]\( NH_3 \)[/tex] that could be produced from [tex]\( N_2 \)[/tex]:
[tex]\[ \text{Theoretical } NH_3 \text{ from } N_2 = V_{N_2} \times 2 = 30 \text{ dm}^3 \times 2 = 60 \text{ dm}^3 \][/tex]
3. Identify the limiting reagent and determine the theoretical yield:
Since the volume of [tex]\( NH_3 \)[/tex] from [tex]\( H_2 \)[/tex] (15 dm³) is less than that from [tex]\( N_2 \)[/tex] (60 dm³), [tex]\( H_2 \)[/tex] is the limiting reagent. Hence, the theoretical yield of [tex]\( NH_3 \)[/tex] is 15 dm³.
4. Calculate the percentage yield of [tex]\( NH_3 \)[/tex]:
[tex]\[ \text{Percentage yield} = \left( \frac{V_{NH_3 \text{ produced}}}{\text{Theoretical } NH_3} \right) \times 100 = \left( \frac{12 \text{ dm}^3}{15 \text{ dm}^3} \right) \times 100 \approx 80\% \][/tex]
### Conclusion
- The percentage purity of the carbon sample is approximately [tex]\( 94.11\% \)[/tex].
- The percentage yield for the reaction is [tex]\( 80\% \)[/tex].
#### Part 6.3: Calculation of Percentage Purity of Carbon
Given:
- Mass of carbon sample, [tex]\( m_{\text{C sample}} = 37 \)[/tex] g
- Volume of [tex]\( CO_2 \)[/tex] produced, [tex]\( V_{CO_2} = 65 \)[/tex] dm³
- At STP (Standard Temperature and Pressure), 1 mole of any gas occupies 22.4 dm³
- Molecular weight of carbon, [tex]\( M_{\text{C}} = 12 \)[/tex] g/mol
Reaction:
[tex]\[ C (s) + O_2 (g) \rightarrow CO_2 (g) \][/tex]
Steps:
1. Calculate the number of moles of [tex]\( CO_2 \)[/tex] produced:
[tex]\[ \text{Moles of } CO_2 = \frac{V_{CO_2}}{22.4 \text{ dm}^3/\text{mol}} = \frac{65 \text{ dm}^3}{22.4 \text{ dm}^3/\text{mol}} \approx 2.9018 \text{ moles} \][/tex]
2. The reaction shows a 1:1 molar ratio between carbon and [tex]\( CO_2 \)[/tex]. Therefore, the moles of carbon required are equal to the moles of [tex]\( CO_2 \)[/tex] produced:
[tex]\[ \text{Moles of } C = \text{Moles of } CO_2 = 2.9018 \text{ moles} \][/tex]
3. Calculate the mass of pure carbon required (using its molar mass):
[tex]\[ \text{Mass of pure carbon} = \text{Moles of } C \times M_{\text{C}} = 2.9018 \text{ moles} \times 12 \text{ g/mol} \approx 34.8214 \text{ g} \][/tex]
4. Calculate the percentage purity of the carbon sample:
[tex]\[ \text{Percentage purity} = \left( \frac{\text{Mass of pure carbon}}{\text{Mass of carbon sample}} \right) \times 100 = \left( \frac{34.8214 \text{ g}}{37 \text{ g}} \right) \times 100 \approx 94.11\% \][/tex]
#### Part 6.4: Calculation of Percentage Yield for the Reaction
Given:
- Volume of [tex]\( H_2 \)[/tex] placed in-container, [tex]\( V_{H_2} = 22.5 \)[/tex] dm³
- Volume of [tex]\( N_2 \)[/tex] placed in-container, [tex]\( V_{N_2} = 30 \)[/tex] dm³
- Volume of [tex]\( NH_3 \)[/tex] produced, [tex]\( V_{NH_3} = 12 \)[/tex] dm³
Reaction:
[tex]\[ N_2 (g) + 3H_2 (g) \rightarrow 2NH_3 (g) \][/tex]
Steps:
1. Calculate the theoretical volume of [tex]\( NH_3 \)[/tex] that could be produced from [tex]\( H_2 \)[/tex]:
[tex]\[ \text{Theoretical } NH_3 \text{ from } H_2 = \frac{V_{H_2}}{3} \times 2 = \frac{22.5 \text{ dm}^3}{3} \times 2 = 15 \text{ dm}^3 \][/tex]
2. Calculate the theoretical volume of [tex]\( NH_3 \)[/tex] that could be produced from [tex]\( N_2 \)[/tex]:
[tex]\[ \text{Theoretical } NH_3 \text{ from } N_2 = V_{N_2} \times 2 = 30 \text{ dm}^3 \times 2 = 60 \text{ dm}^3 \][/tex]
3. Identify the limiting reagent and determine the theoretical yield:
Since the volume of [tex]\( NH_3 \)[/tex] from [tex]\( H_2 \)[/tex] (15 dm³) is less than that from [tex]\( N_2 \)[/tex] (60 dm³), [tex]\( H_2 \)[/tex] is the limiting reagent. Hence, the theoretical yield of [tex]\( NH_3 \)[/tex] is 15 dm³.
4. Calculate the percentage yield of [tex]\( NH_3 \)[/tex]:
[tex]\[ \text{Percentage yield} = \left( \frac{V_{NH_3 \text{ produced}}}{\text{Theoretical } NH_3} \right) \times 100 = \left( \frac{12 \text{ dm}^3}{15 \text{ dm}^3} \right) \times 100 \approx 80\% \][/tex]
### Conclusion
- The percentage purity of the carbon sample is approximately [tex]\( 94.11\% \)[/tex].
- The percentage yield for the reaction is [tex]\( 80\% \)[/tex].
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and come back for more insightful information.