Discover a world of knowledge and get your questions answered at IDNLearn.com. Get the information you need from our community of experts, who provide detailed and trustworthy answers.
Sagot :
Let's solve the inequality
[tex]\[ \frac{2}{x+1} < \frac{x}{x+3}. \][/tex]
### Step 1: Identify the domain restrictions
First, determine the values of [tex]\( x \)[/tex] that make the denominators zero, as these values are excluded from the domain of the inequality.
Denominator of the left side: [tex]\( x+1 \)[/tex]. Set it to zero:
[tex]\[ x + 1 = 0 \Rightarrow x = -1. \][/tex]
Denominator of the right side: [tex]\( x+3 \)[/tex]. Set it to zero:
[tex]\[ x + 3 = 0 \Rightarrow x = -3. \][/tex]
Thus, the values [tex]\( x = -1 \)[/tex] and [tex]\( x = -3 \)[/tex] are excluded from the domain.
### Step 2: Rewrite the inequality
Rewrite the inequality to have a common denominator:
[tex]\[ \frac{2}{x+1} - \frac{x}{x+3} < 0. \][/tex]
Combine the fractions:
[tex]\[ \frac{2(x+3) - x(x+1)}{(x+1)(x+3)} < 0. \][/tex]
Simplify the numerator:
[tex]\[ 2(x + 3) - x(x + 1) = 2x + 6 - x^2 - x = -x^2 + x + 6. \][/tex]
Thus, the inequality becomes:
[tex]\[ \frac{-x^2 + x + 6}{(x+1)(x+3)} < 0. \][/tex]
### Step 3: Solve the quadratic inequality
Factor the numerator [tex]\(-x^2 + x + 6\)[/tex]:
[tex]\[ -x^2 + x + 6 = -(x^2 - x - 6) = -(x - 3)(x + 2). \][/tex]
Now the inequality is:
[tex]\[ \frac{-(x - 3)(x + 2)}{(x + 1)(x + 3)} < 0. \][/tex]
### Step 4: Determine the sign changes using critical points
Identify the critical points from the factored form:
[tex]\[ -(x - 3)(x + 2) = 0 \Rightarrow x = 3 \text{ and } x = -2, \][/tex]
and from the denominators:
[tex]\[ (x + 1)(x + 3) = 0 \Rightarrow x = -1 \text{ and } x = -3. \][/tex]
The critical points divide the real number line into intervals:
[tex]\[ (-\infty, -3), (-3, -2), (-2, -1), (-1, 3), (3, \infty). \][/tex]
### Step 5: Test the signs in each interval
#### Interval [tex]\( (-\infty, -3) \)[/tex]:
Choose [tex]\( x = -4 \)[/tex]:
[tex]\[ \frac{-(x - 3)(x + 2)}{(x + 1)(x + 3)} = \frac{-(-4 - 3)(-4 + 2)}{(-4 + 1)(-4 + 3)} = \frac{-(-7)(-2)}{(-3)(-1)} = \frac{-14}{3} > 0. \][/tex]
The inequality is not satisfied.
#### Interval [tex]\( (-3, -2) \)[/tex]:
Choose [tex]\( x = -2.5 \)[/tex]:
[tex]\[ \frac{-(x - 3)(x + 2)}{(x + 1)(x + 3)} = \frac{-(-2.5 - 3)(-2.5 + 2)}{(-2.5 + 1)(-2.5 + 3)} = \frac{-(-5.5)(-0.5)}{(-1.5)(0.5)} = \frac{-2.75}{-0.75} > 0. \][/tex]
The inequality is not satisfied.
#### Interval [tex]\( (-2, -1) \)[/tex]:
Choose [tex]\( x = -1.5 \)[/tex]:
[tex]\[ \frac{-(x - 3)(x + 2)}{(x + 1)(x + 3)} = \frac{-(-1.5 - 3)(-1.5 + 2)}{(-1.5 + 1)(-1.5 + 3)} = \frac{-(-4.5)(0.5)}{(-0.5)(1.5)} = \frac{2.25}{-0.75} < 0. \][/tex]
The inequality is satisfied.
#### Interval [tex]\( (-1, 3) \)[/tex]:
Choose [tex]\( x = 0 \)[/tex]:
[tex]\[ \frac{-(x - 3)(x + 2)}{(x + 1)(x + 3)} = \frac{-(0 - 3)(0 + 2)}{(0 + 1)(0 + 3)} = \frac{-(-3)(2)}{(1)(3)} = \frac{6}{3} > 0. \][/tex]
The inequality is not satisfied.
#### Interval [tex]\( (3, \infty) \)[/tex]:
Choose [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{-(x - 3)(x + 2)}{(x + 1)(x + 3)} = \frac{-(4 - 3)(4 + 2)}{(4 + 1)(4 + 3)} = \frac{-(1)(6)}{(5)(7)} = \frac{-6}{35} < 0. \][/tex]
The inequality is satisfied.
### Step 6: Combine the solution intervals
Based on the sign test, the solutions to the inequality [tex]\(\frac{2}{x+1} < \frac{x}{x+3}\)[/tex] are:
[tex]\[ x \in (-2, -1) \cup (3, \infty), \][/tex]
along with the interval where if [tex]\((x + 3) < 0\)[/tex]:
[tex]\[ x \in (-\infty, -3). \][/tex]
Combining all intervals where the inequality is satisfied, the solution set is:
[tex]\[ x \in (-\infty, -3) \cup (-2, -1) \cup (3, \infty). \][/tex]
Hence, the solution is:
[tex]\[ (-\infty < x < -3) \cup (-2 < x < -1) \cup (3 < x < \infty). \][/tex]
[tex]\[ \frac{2}{x+1} < \frac{x}{x+3}. \][/tex]
### Step 1: Identify the domain restrictions
First, determine the values of [tex]\( x \)[/tex] that make the denominators zero, as these values are excluded from the domain of the inequality.
Denominator of the left side: [tex]\( x+1 \)[/tex]. Set it to zero:
[tex]\[ x + 1 = 0 \Rightarrow x = -1. \][/tex]
Denominator of the right side: [tex]\( x+3 \)[/tex]. Set it to zero:
[tex]\[ x + 3 = 0 \Rightarrow x = -3. \][/tex]
Thus, the values [tex]\( x = -1 \)[/tex] and [tex]\( x = -3 \)[/tex] are excluded from the domain.
### Step 2: Rewrite the inequality
Rewrite the inequality to have a common denominator:
[tex]\[ \frac{2}{x+1} - \frac{x}{x+3} < 0. \][/tex]
Combine the fractions:
[tex]\[ \frac{2(x+3) - x(x+1)}{(x+1)(x+3)} < 0. \][/tex]
Simplify the numerator:
[tex]\[ 2(x + 3) - x(x + 1) = 2x + 6 - x^2 - x = -x^2 + x + 6. \][/tex]
Thus, the inequality becomes:
[tex]\[ \frac{-x^2 + x + 6}{(x+1)(x+3)} < 0. \][/tex]
### Step 3: Solve the quadratic inequality
Factor the numerator [tex]\(-x^2 + x + 6\)[/tex]:
[tex]\[ -x^2 + x + 6 = -(x^2 - x - 6) = -(x - 3)(x + 2). \][/tex]
Now the inequality is:
[tex]\[ \frac{-(x - 3)(x + 2)}{(x + 1)(x + 3)} < 0. \][/tex]
### Step 4: Determine the sign changes using critical points
Identify the critical points from the factored form:
[tex]\[ -(x - 3)(x + 2) = 0 \Rightarrow x = 3 \text{ and } x = -2, \][/tex]
and from the denominators:
[tex]\[ (x + 1)(x + 3) = 0 \Rightarrow x = -1 \text{ and } x = -3. \][/tex]
The critical points divide the real number line into intervals:
[tex]\[ (-\infty, -3), (-3, -2), (-2, -1), (-1, 3), (3, \infty). \][/tex]
### Step 5: Test the signs in each interval
#### Interval [tex]\( (-\infty, -3) \)[/tex]:
Choose [tex]\( x = -4 \)[/tex]:
[tex]\[ \frac{-(x - 3)(x + 2)}{(x + 1)(x + 3)} = \frac{-(-4 - 3)(-4 + 2)}{(-4 + 1)(-4 + 3)} = \frac{-(-7)(-2)}{(-3)(-1)} = \frac{-14}{3} > 0. \][/tex]
The inequality is not satisfied.
#### Interval [tex]\( (-3, -2) \)[/tex]:
Choose [tex]\( x = -2.5 \)[/tex]:
[tex]\[ \frac{-(x - 3)(x + 2)}{(x + 1)(x + 3)} = \frac{-(-2.5 - 3)(-2.5 + 2)}{(-2.5 + 1)(-2.5 + 3)} = \frac{-(-5.5)(-0.5)}{(-1.5)(0.5)} = \frac{-2.75}{-0.75} > 0. \][/tex]
The inequality is not satisfied.
#### Interval [tex]\( (-2, -1) \)[/tex]:
Choose [tex]\( x = -1.5 \)[/tex]:
[tex]\[ \frac{-(x - 3)(x + 2)}{(x + 1)(x + 3)} = \frac{-(-1.5 - 3)(-1.5 + 2)}{(-1.5 + 1)(-1.5 + 3)} = \frac{-(-4.5)(0.5)}{(-0.5)(1.5)} = \frac{2.25}{-0.75} < 0. \][/tex]
The inequality is satisfied.
#### Interval [tex]\( (-1, 3) \)[/tex]:
Choose [tex]\( x = 0 \)[/tex]:
[tex]\[ \frac{-(x - 3)(x + 2)}{(x + 1)(x + 3)} = \frac{-(0 - 3)(0 + 2)}{(0 + 1)(0 + 3)} = \frac{-(-3)(2)}{(1)(3)} = \frac{6}{3} > 0. \][/tex]
The inequality is not satisfied.
#### Interval [tex]\( (3, \infty) \)[/tex]:
Choose [tex]\( x = 4 \)[/tex]:
[tex]\[ \frac{-(x - 3)(x + 2)}{(x + 1)(x + 3)} = \frac{-(4 - 3)(4 + 2)}{(4 + 1)(4 + 3)} = \frac{-(1)(6)}{(5)(7)} = \frac{-6}{35} < 0. \][/tex]
The inequality is satisfied.
### Step 6: Combine the solution intervals
Based on the sign test, the solutions to the inequality [tex]\(\frac{2}{x+1} < \frac{x}{x+3}\)[/tex] are:
[tex]\[ x \in (-2, -1) \cup (3, \infty), \][/tex]
along with the interval where if [tex]\((x + 3) < 0\)[/tex]:
[tex]\[ x \in (-\infty, -3). \][/tex]
Combining all intervals where the inequality is satisfied, the solution set is:
[tex]\[ x \in (-\infty, -3) \cup (-2, -1) \cup (3, \infty). \][/tex]
Hence, the solution is:
[tex]\[ (-\infty < x < -3) \cup (-2 < x < -1) \cup (3 < x < \infty). \][/tex]
Thank you for being part of this discussion. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. Your search for answers ends at IDNLearn.com. Thank you for visiting, and we hope to assist you again soon.