Connect with knowledgeable experts and enthusiasts on IDNLearn.com. Our Q&A platform offers reliable and thorough answers to ensure you have the information you need to succeed in any situation.
Sagot :
To determine the interval where both functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are positive, we need to analyze each function individually and then see where they overlap in terms of positiveness.
### Function [tex]\( f(x) \)[/tex]
Given:
- [tex]\( f(x) \)[/tex] is a logarithmic function with a vertical asymptote at [tex]\( x = 0 \)[/tex].
- [tex]\( f(x) \)[/tex] has an [tex]\( x \)[/tex]-intercept at [tex]\( (4, 0) \)[/tex].
- [tex]\( f(x) \)[/tex] is decreasing over the interval [tex]\( (0, \infty) \)[/tex].
From these properties, we can infer:
- Because [tex]\( f(x) \)[/tex] is logarithmic and has an intercept at [tex]\( (4, 0) \)[/tex], it must be in the form [tex]\( f(x) = \log_b(x) + c \)[/tex], where [tex]\( b > 1 \)[/tex] since the function is decreasing.
- Therefore, [tex]\( f(x) \)[/tex] will be positive when [tex]\( \log_b(x) + c > 0 \)[/tex].
Since the [tex]\( x \)[/tex]-intercept is at [tex]\( 4 \)[/tex]:
- For [tex]\( f(x) = \log_b(x) - \log_b(4) \)[/tex]:
- [tex]\( f(x) = \log_b(x/4) \)[/tex]
We need [tex]\( x \)[/tex] values such that [tex]\( x / 4 > 1 \)[/tex], i.e., [tex]\( x > 4 \)[/tex].
### Function [tex]\( g(x) \)[/tex]
Given:
- [tex]\( g(x) = \log_2(x + 3) - 2 \)[/tex]
For [tex]\( g(x) \)[/tex] to be positive:
- [tex]\( \log_2(x + 3) - 2 > 0 \)[/tex]
- [tex]\( \log_2(x + 3) > 2 \)[/tex]
- This implies that [tex]\( x + 3 > 2^2 \)[/tex]
- [tex]\( x + 3 > 4 \)[/tex]
- [tex]\( x > 1 \)[/tex]
### Intersection of Positive Intervals
Now, combining the intervals where each function is positive:
- [tex]\( f(x) \)[/tex] is positive for [tex]\( x > 4 \)[/tex]
- [tex]\( g(x) \)[/tex] is positive for [tex]\( x > 1 \)[/tex]
The overlap of these intervals is [tex]\( x > 4 \)[/tex].
### Conclusion
Both functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are positive for [tex]\( x \)[/tex] in the interval [tex]\( (4, \infty) \)[/tex].
### Function [tex]\( f(x) \)[/tex]
Given:
- [tex]\( f(x) \)[/tex] is a logarithmic function with a vertical asymptote at [tex]\( x = 0 \)[/tex].
- [tex]\( f(x) \)[/tex] has an [tex]\( x \)[/tex]-intercept at [tex]\( (4, 0) \)[/tex].
- [tex]\( f(x) \)[/tex] is decreasing over the interval [tex]\( (0, \infty) \)[/tex].
From these properties, we can infer:
- Because [tex]\( f(x) \)[/tex] is logarithmic and has an intercept at [tex]\( (4, 0) \)[/tex], it must be in the form [tex]\( f(x) = \log_b(x) + c \)[/tex], where [tex]\( b > 1 \)[/tex] since the function is decreasing.
- Therefore, [tex]\( f(x) \)[/tex] will be positive when [tex]\( \log_b(x) + c > 0 \)[/tex].
Since the [tex]\( x \)[/tex]-intercept is at [tex]\( 4 \)[/tex]:
- For [tex]\( f(x) = \log_b(x) - \log_b(4) \)[/tex]:
- [tex]\( f(x) = \log_b(x/4) \)[/tex]
We need [tex]\( x \)[/tex] values such that [tex]\( x / 4 > 1 \)[/tex], i.e., [tex]\( x > 4 \)[/tex].
### Function [tex]\( g(x) \)[/tex]
Given:
- [tex]\( g(x) = \log_2(x + 3) - 2 \)[/tex]
For [tex]\( g(x) \)[/tex] to be positive:
- [tex]\( \log_2(x + 3) - 2 > 0 \)[/tex]
- [tex]\( \log_2(x + 3) > 2 \)[/tex]
- This implies that [tex]\( x + 3 > 2^2 \)[/tex]
- [tex]\( x + 3 > 4 \)[/tex]
- [tex]\( x > 1 \)[/tex]
### Intersection of Positive Intervals
Now, combining the intervals where each function is positive:
- [tex]\( f(x) \)[/tex] is positive for [tex]\( x > 4 \)[/tex]
- [tex]\( g(x) \)[/tex] is positive for [tex]\( x > 1 \)[/tex]
The overlap of these intervals is [tex]\( x > 4 \)[/tex].
### Conclusion
Both functions [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] are positive for [tex]\( x \)[/tex] in the interval [tex]\( (4, \infty) \)[/tex].
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com provides the best answers to your questions. Thank you for visiting, and come back soon for more helpful information.