IDNLearn.com offers a reliable platform for finding accurate and timely answers. Ask your questions and get detailed, reliable answers from our community of experienced experts.
Sagot :
To approximate the solution for the equation [tex]\( f(x) = g(x) \)[/tex] using three iterations of successive approximation, let's follow a step-by-step process.
First, recall the definitions of [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:
[tex]\[ f(x) = \frac{x^2 + 3x + 2}{x + 8} \][/tex]
[tex]\[ g(x) = \frac{x - 1}{\pi} \][/tex]
### Step 1: Identify the Starting Point
From the given information, we set the initial guess for our starting point. Let's denote this starting point as [tex]\( x_0 \)[/tex]. According to the problem, we will use [tex]\( x = 1.0 \)[/tex] as our initial guess:
[tex]\[ x_0 = 1.0 \][/tex]
### Step 2: Define the Successive Approximation Method
In each iteration, we will compute a new approximation of [tex]\( x \)[/tex] by averaging [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:
[tex]\[ x_{\text{new}} = \frac{f(x) + g(x)}{2} \][/tex]
### Step 3: Perform Successive Approximation
#### Iteration 1
- Compute [tex]\( f(x_0) \)[/tex]:
[tex]\[ f(1.0) = \frac{(1.0)^2 + 3(1.0) + 2}{1.0 + 8} = \frac{1 + 3 + 2}{9} = \frac{6}{9} = \frac{2}{3} = 0.6667 \][/tex]
- Compute [tex]\( g(x_0) \)[/tex]:
[tex]\[ g(1.0) = \frac{1.0 - 1}{\pi} = \frac{0}{\pi} = 0 \][/tex]
- Average the results:
[tex]\[ x_1 = \frac{0.6667 + 0}{2} = \frac{0.6667}{2} = 0.3333 \][/tex]
#### Iteration 2
- Compute [tex]\( f(x_1) \)[/tex]:
[tex]\[ f(0.3333) = \frac{(0.3333)^2 + 3(0.3333) + 2}{0.3333 + 8} = \frac{0.1111 + 0.9999 + 2}{8.3333} \approx \frac{3.111}{8.333} \approx 0.3732 \][/tex]
- Compute [tex]\( g(x_1) \)[/tex]:
[tex]\[ g(0.3333) = \frac{0.3333 - 1}{\pi} = \frac{-0.6667}{\pi} \approx -0.2120 \][/tex]
- Average the results:
[tex]\[ x_2 = \frac{0.3732 + (-0.2120)}{2} = \frac{0.1612}{2} = 0.0806 \][/tex]
#### Iteration 3
- Compute [tex]\( f(x_2) \)[/tex]:
[tex]\[ f(0.0806) = \frac{(0.0806)^2 + 3(0.0806) + 2}{0.0806 + 8} \approx \frac{0.0065 + 0.2418 + 2}{8.0806} \approx \frac{2.2483}{8.0806} \approx 0.2783 \][/tex]
- Compute [tex]\( g(x_2) \)[/tex]:
[tex]\[ g(0.0806) = \frac{0.0806 - 1}{\pi} = \frac{-0.9194}{\pi} \approx -0.2927 \][/tex]
- Average the results:
[tex]\[ x_3 = \frac{0.2783 + (-0.2927)}{2} = \frac{-0.0144}{2} = -0.0072 \][/tex]
### Conclusion
After three iterations, the successive approximation yields the value [tex]\(-0.0072\)[/tex]. Therefore, our approximate solution to the equation [tex]\( f(x) = g(x) \)[/tex] after three iterations is:
[tex]\[ x \approx -0.0072 \][/tex]
First, recall the definitions of [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:
[tex]\[ f(x) = \frac{x^2 + 3x + 2}{x + 8} \][/tex]
[tex]\[ g(x) = \frac{x - 1}{\pi} \][/tex]
### Step 1: Identify the Starting Point
From the given information, we set the initial guess for our starting point. Let's denote this starting point as [tex]\( x_0 \)[/tex]. According to the problem, we will use [tex]\( x = 1.0 \)[/tex] as our initial guess:
[tex]\[ x_0 = 1.0 \][/tex]
### Step 2: Define the Successive Approximation Method
In each iteration, we will compute a new approximation of [tex]\( x \)[/tex] by averaging [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:
[tex]\[ x_{\text{new}} = \frac{f(x) + g(x)}{2} \][/tex]
### Step 3: Perform Successive Approximation
#### Iteration 1
- Compute [tex]\( f(x_0) \)[/tex]:
[tex]\[ f(1.0) = \frac{(1.0)^2 + 3(1.0) + 2}{1.0 + 8} = \frac{1 + 3 + 2}{9} = \frac{6}{9} = \frac{2}{3} = 0.6667 \][/tex]
- Compute [tex]\( g(x_0) \)[/tex]:
[tex]\[ g(1.0) = \frac{1.0 - 1}{\pi} = \frac{0}{\pi} = 0 \][/tex]
- Average the results:
[tex]\[ x_1 = \frac{0.6667 + 0}{2} = \frac{0.6667}{2} = 0.3333 \][/tex]
#### Iteration 2
- Compute [tex]\( f(x_1) \)[/tex]:
[tex]\[ f(0.3333) = \frac{(0.3333)^2 + 3(0.3333) + 2}{0.3333 + 8} = \frac{0.1111 + 0.9999 + 2}{8.3333} \approx \frac{3.111}{8.333} \approx 0.3732 \][/tex]
- Compute [tex]\( g(x_1) \)[/tex]:
[tex]\[ g(0.3333) = \frac{0.3333 - 1}{\pi} = \frac{-0.6667}{\pi} \approx -0.2120 \][/tex]
- Average the results:
[tex]\[ x_2 = \frac{0.3732 + (-0.2120)}{2} = \frac{0.1612}{2} = 0.0806 \][/tex]
#### Iteration 3
- Compute [tex]\( f(x_2) \)[/tex]:
[tex]\[ f(0.0806) = \frac{(0.0806)^2 + 3(0.0806) + 2}{0.0806 + 8} \approx \frac{0.0065 + 0.2418 + 2}{8.0806} \approx \frac{2.2483}{8.0806} \approx 0.2783 \][/tex]
- Compute [tex]\( g(x_2) \)[/tex]:
[tex]\[ g(0.0806) = \frac{0.0806 - 1}{\pi} = \frac{-0.9194}{\pi} \approx -0.2927 \][/tex]
- Average the results:
[tex]\[ x_3 = \frac{0.2783 + (-0.2927)}{2} = \frac{-0.0144}{2} = -0.0072 \][/tex]
### Conclusion
After three iterations, the successive approximation yields the value [tex]\(-0.0072\)[/tex]. Therefore, our approximate solution to the equation [tex]\( f(x) = g(x) \)[/tex] after three iterations is:
[tex]\[ x \approx -0.0072 \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! Thank you for choosing IDNLearn.com. We’re committed to providing accurate answers, so visit us again soon.