IDNLearn.com offers a reliable platform for finding accurate and timely answers. Ask your questions and get detailed, reliable answers from our community of experienced experts.

Select the correct location on the table.

Consider the following equations:
[tex]\[
\begin{array}{l}
f(x) = \frac{x^2 + 3x + 2}{x + 8} \\
g(x) = \frac{x - 1}{\pi}
\end{array}
\][/tex]

Approximate the solution to the equation [tex]\(f(x) = g(x)\)[/tex] using three iterations of successive approximation. Use the graph as a starting point.


Sagot :

To approximate the solution for the equation [tex]\( f(x) = g(x) \)[/tex] using three iterations of successive approximation, let's follow a step-by-step process.

First, recall the definitions of [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:

[tex]\[ f(x) = \frac{x^2 + 3x + 2}{x + 8} \][/tex]

[tex]\[ g(x) = \frac{x - 1}{\pi} \][/tex]

### Step 1: Identify the Starting Point

From the given information, we set the initial guess for our starting point. Let's denote this starting point as [tex]\( x_0 \)[/tex]. According to the problem, we will use [tex]\( x = 1.0 \)[/tex] as our initial guess:

[tex]\[ x_0 = 1.0 \][/tex]

### Step 2: Define the Successive Approximation Method

In each iteration, we will compute a new approximation of [tex]\( x \)[/tex] by averaging [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex]:

[tex]\[ x_{\text{new}} = \frac{f(x) + g(x)}{2} \][/tex]

### Step 3: Perform Successive Approximation

#### Iteration 1

- Compute [tex]\( f(x_0) \)[/tex]:

[tex]\[ f(1.0) = \frac{(1.0)^2 + 3(1.0) + 2}{1.0 + 8} = \frac{1 + 3 + 2}{9} = \frac{6}{9} = \frac{2}{3} = 0.6667 \][/tex]

- Compute [tex]\( g(x_0) \)[/tex]:

[tex]\[ g(1.0) = \frac{1.0 - 1}{\pi} = \frac{0}{\pi} = 0 \][/tex]

- Average the results:

[tex]\[ x_1 = \frac{0.6667 + 0}{2} = \frac{0.6667}{2} = 0.3333 \][/tex]

#### Iteration 2

- Compute [tex]\( f(x_1) \)[/tex]:

[tex]\[ f(0.3333) = \frac{(0.3333)^2 + 3(0.3333) + 2}{0.3333 + 8} = \frac{0.1111 + 0.9999 + 2}{8.3333} \approx \frac{3.111}{8.333} \approx 0.3732 \][/tex]

- Compute [tex]\( g(x_1) \)[/tex]:

[tex]\[ g(0.3333) = \frac{0.3333 - 1}{\pi} = \frac{-0.6667}{\pi} \approx -0.2120 \][/tex]

- Average the results:

[tex]\[ x_2 = \frac{0.3732 + (-0.2120)}{2} = \frac{0.1612}{2} = 0.0806 \][/tex]

#### Iteration 3

- Compute [tex]\( f(x_2) \)[/tex]:

[tex]\[ f(0.0806) = \frac{(0.0806)^2 + 3(0.0806) + 2}{0.0806 + 8} \approx \frac{0.0065 + 0.2418 + 2}{8.0806} \approx \frac{2.2483}{8.0806} \approx 0.2783 \][/tex]

- Compute [tex]\( g(x_2) \)[/tex]:

[tex]\[ g(0.0806) = \frac{0.0806 - 1}{\pi} = \frac{-0.9194}{\pi} \approx -0.2927 \][/tex]

- Average the results:

[tex]\[ x_3 = \frac{0.2783 + (-0.2927)}{2} = \frac{-0.0144}{2} = -0.0072 \][/tex]

### Conclusion

After three iterations, the successive approximation yields the value [tex]\(-0.0072\)[/tex]. Therefore, our approximate solution to the equation [tex]\( f(x) = g(x) \)[/tex] after three iterations is:

[tex]\[ x \approx -0.0072 \][/tex]