Get comprehensive solutions to your questions with the help of IDNLearn.com's experts. Find accurate and detailed answers to your questions from our experienced and dedicated community members.
Sagot :
To determine the enthalpy of vaporization, [tex]\(\Delta H_{\text{vap}}\)[/tex], of HF from the given vapor pressure data, we follow these steps:
### Step 1: Organize the Data
First, we list the given data:
- Temperatures, [tex]\(T\)[/tex], in Kelvin: [tex]\(250 \, \text{K}\)[/tex], [tex]\(260 \, \text{K}\)[/tex], [tex]\(270 \, \text{K}\)[/tex], [tex]\(280 \, \text{K}\)[/tex]
- Vapor pressures, [tex]\(P\)[/tex], in mmHg: [tex]\(129.63 \, \text{mmHg}\)[/tex], [tex]\(206.65 \, \text{mmHg}\)[/tex], [tex]\(318.22 \, \text{mmHg}\)[/tex], [tex]\(475.16 \, \text{mmHg}\)[/tex]
### Step 2: Convert Pressure to Natural Logarithm
We need to convert the pressure data to their natural logarithm values, [tex]\(\ln P\)[/tex]:
[tex]\[ \begin{aligned} \ln(129.63) & \approx 4.86468424 \\ \ln(206.65) & \approx 5.33102654 \\ \ln(318.22) & \approx 5.76274297 \\ \ln(475.16) & \approx 6.16365159 \end{aligned} \][/tex]
### Step 3: Convert Temperature to Inverse Temperature
Next, we convert the temperature data to their inverse values, [tex]\(\frac{1}{T}\)[/tex], in [tex]\(\text{K}^{-1}): \[ \begin{aligned} \frac{1}{250} & = 0.004 \\ \frac{1}{260} & \approx 0.00384615 \\ \frac{1}{270} & \approx 0.00370370 \\ \frac{1}{280} & \approx 0.00357143 \end{aligned} \] ### Step 4: Perform Linear Regression To determine the slope of the line in the \(\ln P\)[/tex] vs. [tex]\(\frac{1}{T}\)[/tex] plot, we perform a linear regression. The linear regression provides us with the slope of the best-fit line. The result for the slope obtained from the regression is:
[tex]\[ \text{slope} \approx -3030.8993687210695 \][/tex]
### Step 5: Calculate the Enthalpy of Vaporization
The Clausius-Clapeyron equation in its linear form is given by:
[tex]\[ \ln P = -\frac{\Delta H_{\text{vap}}}{R} \left(\frac{1}{T}\right) + C \][/tex]
where [tex]\(R\)[/tex] is the universal gas constant ([tex]\(R = 8.314 \, \text{J/(mol·K)}\)[/tex]). From the slope [tex]\(-\frac{\Delta H_{\text{vap}}}{R}\)[/tex], we can solve for [tex]\(\Delta H_{\text{vap}}\)[/tex]:
[tex]\[ \Delta H_{\text{vap}} = -\text{slope} \times R \][/tex]
Given that:
[tex]\[ \text{slope} \approx -3030.8993687210695 \][/tex]
[tex]\[ R = 8.314 \, \text{J/(mol·K)} \][/tex]
Converting the enthalpy from J/mol to kJ/mol by dividing by 1000:
[tex]\[ \Delta H_{\text{vap}} = -(-3030.8993687210695) \times 8.314 / 1000 \][/tex]
Simplifying this expression yields:
[tex]\[ \Delta H_{\text{vap}} \approx 25.19889735154697 \, \text{kJ/mol} \][/tex]
Therefore, the enthalpy of vaporization, [tex]\(\Delta H_{\text{vap}}\)[/tex], of HF is approximately:
[tex]\[ \boxed{25.19889735154697 \, \text{kJ/mol}} \][/tex]
### Step 1: Organize the Data
First, we list the given data:
- Temperatures, [tex]\(T\)[/tex], in Kelvin: [tex]\(250 \, \text{K}\)[/tex], [tex]\(260 \, \text{K}\)[/tex], [tex]\(270 \, \text{K}\)[/tex], [tex]\(280 \, \text{K}\)[/tex]
- Vapor pressures, [tex]\(P\)[/tex], in mmHg: [tex]\(129.63 \, \text{mmHg}\)[/tex], [tex]\(206.65 \, \text{mmHg}\)[/tex], [tex]\(318.22 \, \text{mmHg}\)[/tex], [tex]\(475.16 \, \text{mmHg}\)[/tex]
### Step 2: Convert Pressure to Natural Logarithm
We need to convert the pressure data to their natural logarithm values, [tex]\(\ln P\)[/tex]:
[tex]\[ \begin{aligned} \ln(129.63) & \approx 4.86468424 \\ \ln(206.65) & \approx 5.33102654 \\ \ln(318.22) & \approx 5.76274297 \\ \ln(475.16) & \approx 6.16365159 \end{aligned} \][/tex]
### Step 3: Convert Temperature to Inverse Temperature
Next, we convert the temperature data to their inverse values, [tex]\(\frac{1}{T}\)[/tex], in [tex]\(\text{K}^{-1}): \[ \begin{aligned} \frac{1}{250} & = 0.004 \\ \frac{1}{260} & \approx 0.00384615 \\ \frac{1}{270} & \approx 0.00370370 \\ \frac{1}{280} & \approx 0.00357143 \end{aligned} \] ### Step 4: Perform Linear Regression To determine the slope of the line in the \(\ln P\)[/tex] vs. [tex]\(\frac{1}{T}\)[/tex] plot, we perform a linear regression. The linear regression provides us with the slope of the best-fit line. The result for the slope obtained from the regression is:
[tex]\[ \text{slope} \approx -3030.8993687210695 \][/tex]
### Step 5: Calculate the Enthalpy of Vaporization
The Clausius-Clapeyron equation in its linear form is given by:
[tex]\[ \ln P = -\frac{\Delta H_{\text{vap}}}{R} \left(\frac{1}{T}\right) + C \][/tex]
where [tex]\(R\)[/tex] is the universal gas constant ([tex]\(R = 8.314 \, \text{J/(mol·K)}\)[/tex]). From the slope [tex]\(-\frac{\Delta H_{\text{vap}}}{R}\)[/tex], we can solve for [tex]\(\Delta H_{\text{vap}}\)[/tex]:
[tex]\[ \Delta H_{\text{vap}} = -\text{slope} \times R \][/tex]
Given that:
[tex]\[ \text{slope} \approx -3030.8993687210695 \][/tex]
[tex]\[ R = 8.314 \, \text{J/(mol·K)} \][/tex]
Converting the enthalpy from J/mol to kJ/mol by dividing by 1000:
[tex]\[ \Delta H_{\text{vap}} = -(-3030.8993687210695) \times 8.314 / 1000 \][/tex]
Simplifying this expression yields:
[tex]\[ \Delta H_{\text{vap}} \approx 25.19889735154697 \, \text{kJ/mol} \][/tex]
Therefore, the enthalpy of vaporization, [tex]\(\Delta H_{\text{vap}}\)[/tex], of HF is approximately:
[tex]\[ \boxed{25.19889735154697 \, \text{kJ/mol}} \][/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and see you next time for more reliable information.