Explore a wide range of topics and get answers from experts on IDNLearn.com. Ask your questions and receive reliable, detailed answers from our dedicated community of experts.
Sagot :
To calculate the percentage purity of the potassium hydroxide (KOH) sample, we need to go through the problem step by step.
1. Convert volumes from cm^3 to dm^3:
[tex]\[ \text{Volume of } HNO_3 = 175 \, \text{cm}^3 = 0.175 \, \text{dm}^3 \][/tex]
[tex]\[ \text{Volume of } HNO_3 \text{ titrated sample} = 25 \, \text{cm}^3 = 0.025 \, \text{dm}^3 \][/tex]
[tex]\[ \text{Volume of } Na_2CO_3 = 12.94 \, \text{cm}^3 = 0.01294 \, \text{dm}^3 \][/tex]
2. Calculate the moles of [tex]$HNO_3$[/tex] initially present in the 175 cm³ solution:
[tex]\[ \text{Concentration of } HNO_3 = 1.20 \, \text{mol/dm}^3 \][/tex]
[tex]\[ \text{Moles of } HNO_3 = \text{Concentration} \times \text{Volume} = 1.20 \, \text{mol/dm}^3 \times 0.175 \, \text{dm}^3 = 0.21 \, \text{mol} \][/tex]
3. Calculate the moles of [tex]$Na_2CO_3$[/tex] used in the titration:
[tex]\[ \text{Concentration of } Na_2CO_3 = 0.65 \, \text{mol/dm}^3 \][/tex]
[tex]\[ \text{Moles of } Na_2CO_3 = \text{Concentration} \times \text{Volume} = 0.65 \, \text{mol/dm}^3 \times 0.01294 \, \text{dm}^3 = 0.008411 \, \text{mol} \][/tex]
4. Determine the moles of [tex]$HNO_3$[/tex] that react with the [tex]$Na_2CO_3$[/tex]:
According to the balanced equation [tex]\(2 HNO_3 + Na_2CO_3 \rightarrow 2 NaNO_3 + CO_2 + H_2O\)[/tex],
[tex]\[ \text{Moles of } HNO_3 \text{ reacting with } Na_2CO_3 = 2 \times \text{Moles of } Na_2CO_3 = 2 \times 0.008411 \, \text{mol} = 0.016822 \, \text{mol} \][/tex]
5. Calculate the moles of [tex]$HNO_3$[/tex] in the 25 cm³ titrated sample:
[tex]\[ \text{Moles of } HNO_3 \text{ in sample} = \text{Concentration} \times \text{Volume} = 1.20 \, \text{mol/dm}^3 \times 0.025 \, \text{dm}^3 = 0.03 \, \text{mol} \][/tex]
6. Determine the moles of [tex]$HNO_3$[/tex] that reacted with [tex]$KOH$[/tex] in the 25 cm³ titrated sample:
[tex]\[ \text{Moles of } HNO_3 \text{ reacted with } KOH \text{ in 25 cm}^3 \text{ sample} = 0.03 \, \text{mol} - 0.016822 \, \text{mol} = 0.013178 \, \text{mol} \][/tex]
7. Scale up to the entire 175 cm³ solution:
[tex]\[ \text{Moles of } HNO_3 \text{ reacted with } KOH \text{ in 175 cm}^3 = 0.013178 \, \text{mol} \times \left( \frac{0.175 \, \text{dm}^3}{0.025 \, \text{dm}^3} \right) = 0.092246 \, \text{mol} \][/tex]
8. Calculate the moles of pure [tex]$KOH$[/tex] that reacted with the [tex]$HNO_3$[/tex]:
[tex]\[ \text{From the reaction } HNO_3 + KOH \rightarrow KNO_3 + H_2O, \text{ the moles of } HNO_3 = \text{moles of } KOH. \][/tex]
[tex]\[ \text{Moles of } KOH \text{ is therefore } 0.092246 \, \text{mol}. \][/tex]
9. Calculate the mass of pure [tex]$KOH$[/tex]:
[tex]\[ \text{Molar mass of } KOH = 39 \, \text{(K)} + 16 \, \text{(O)} + 1 \, \text{(H)} = 56 \, \text{g/mol} \][/tex]
[tex]\[ \text{Mass of pure } KOH = 0.092246 \, \text{mol} \times 56 \, \text{g/mol} = 5.165776 \, \text{g} \][/tex]
10. Calculate the percentage purity of the potassium hydroxide sample:
[tex]\[ \text{Percentage purity} = \left( \frac{\text{Mass of pure } KOH}{\text{Mass of impure sample}} \right) \times 100 = \left( \frac{5.165776 \, \text{g}}{8 \, \text{g}} \right) \times 100 \approx 64.57\% \][/tex]
So, the percentage purity of the potassium hydroxide sample is approximately [tex]\(64.57\% \)[/tex].
1. Convert volumes from cm^3 to dm^3:
[tex]\[ \text{Volume of } HNO_3 = 175 \, \text{cm}^3 = 0.175 \, \text{dm}^3 \][/tex]
[tex]\[ \text{Volume of } HNO_3 \text{ titrated sample} = 25 \, \text{cm}^3 = 0.025 \, \text{dm}^3 \][/tex]
[tex]\[ \text{Volume of } Na_2CO_3 = 12.94 \, \text{cm}^3 = 0.01294 \, \text{dm}^3 \][/tex]
2. Calculate the moles of [tex]$HNO_3$[/tex] initially present in the 175 cm³ solution:
[tex]\[ \text{Concentration of } HNO_3 = 1.20 \, \text{mol/dm}^3 \][/tex]
[tex]\[ \text{Moles of } HNO_3 = \text{Concentration} \times \text{Volume} = 1.20 \, \text{mol/dm}^3 \times 0.175 \, \text{dm}^3 = 0.21 \, \text{mol} \][/tex]
3. Calculate the moles of [tex]$Na_2CO_3$[/tex] used in the titration:
[tex]\[ \text{Concentration of } Na_2CO_3 = 0.65 \, \text{mol/dm}^3 \][/tex]
[tex]\[ \text{Moles of } Na_2CO_3 = \text{Concentration} \times \text{Volume} = 0.65 \, \text{mol/dm}^3 \times 0.01294 \, \text{dm}^3 = 0.008411 \, \text{mol} \][/tex]
4. Determine the moles of [tex]$HNO_3$[/tex] that react with the [tex]$Na_2CO_3$[/tex]:
According to the balanced equation [tex]\(2 HNO_3 + Na_2CO_3 \rightarrow 2 NaNO_3 + CO_2 + H_2O\)[/tex],
[tex]\[ \text{Moles of } HNO_3 \text{ reacting with } Na_2CO_3 = 2 \times \text{Moles of } Na_2CO_3 = 2 \times 0.008411 \, \text{mol} = 0.016822 \, \text{mol} \][/tex]
5. Calculate the moles of [tex]$HNO_3$[/tex] in the 25 cm³ titrated sample:
[tex]\[ \text{Moles of } HNO_3 \text{ in sample} = \text{Concentration} \times \text{Volume} = 1.20 \, \text{mol/dm}^3 \times 0.025 \, \text{dm}^3 = 0.03 \, \text{mol} \][/tex]
6. Determine the moles of [tex]$HNO_3$[/tex] that reacted with [tex]$KOH$[/tex] in the 25 cm³ titrated sample:
[tex]\[ \text{Moles of } HNO_3 \text{ reacted with } KOH \text{ in 25 cm}^3 \text{ sample} = 0.03 \, \text{mol} - 0.016822 \, \text{mol} = 0.013178 \, \text{mol} \][/tex]
7. Scale up to the entire 175 cm³ solution:
[tex]\[ \text{Moles of } HNO_3 \text{ reacted with } KOH \text{ in 175 cm}^3 = 0.013178 \, \text{mol} \times \left( \frac{0.175 \, \text{dm}^3}{0.025 \, \text{dm}^3} \right) = 0.092246 \, \text{mol} \][/tex]
8. Calculate the moles of pure [tex]$KOH$[/tex] that reacted with the [tex]$HNO_3$[/tex]:
[tex]\[ \text{From the reaction } HNO_3 + KOH \rightarrow KNO_3 + H_2O, \text{ the moles of } HNO_3 = \text{moles of } KOH. \][/tex]
[tex]\[ \text{Moles of } KOH \text{ is therefore } 0.092246 \, \text{mol}. \][/tex]
9. Calculate the mass of pure [tex]$KOH$[/tex]:
[tex]\[ \text{Molar mass of } KOH = 39 \, \text{(K)} + 16 \, \text{(O)} + 1 \, \text{(H)} = 56 \, \text{g/mol} \][/tex]
[tex]\[ \text{Mass of pure } KOH = 0.092246 \, \text{mol} \times 56 \, \text{g/mol} = 5.165776 \, \text{g} \][/tex]
10. Calculate the percentage purity of the potassium hydroxide sample:
[tex]\[ \text{Percentage purity} = \left( \frac{\text{Mass of pure } KOH}{\text{Mass of impure sample}} \right) \times 100 = \left( \frac{5.165776 \, \text{g}}{8 \, \text{g}} \right) \times 100 \approx 64.57\% \][/tex]
So, the percentage purity of the potassium hydroxide sample is approximately [tex]\(64.57\% \)[/tex].
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Thank you for visiting IDNLearn.com. We’re here to provide dependable answers, so visit us again soon.