Find solutions to your problems with the expert advice available on IDNLearn.com. Find the answers you need quickly and accurately with help from our knowledgeable and dedicated community members.
Sagot :
To solve the linear programming problem of maximizing [tex]\( z = x + 2y \)[/tex] subject to the given constraints, we can follow these steps:
### Step 1: Write down the constraints
We are given the following constraints:
1. [tex]\( 3x + 4y \leq 36 \)[/tex]
2. [tex]\( 6x + 2y \leq 36 \)[/tex]
3. [tex]\( x \geq 0 \)[/tex]
4. [tex]\( y \geq 0 \)[/tex]
### Step 2: Identify the feasible region
The feasible region is determined by the intersection of the constraint inequalities in the [tex]\((x,y)\)[/tex]-plane.
### Step 3: Find the vertices of the feasible region
To find the vertices, we solve the system of inequalities where the lines intersect.
First, solve [tex]\( 3x + 4y = 36 \)[/tex]:
1. When [tex]\( x = 0 \)[/tex], [tex]\( 4y = 36 \rightarrow y = 9 \)[/tex].
2. When [tex]\( y = 0 \)[/tex], [tex]\( 3x = 36 \rightarrow x = 12 \)[/tex].
So, the line intersects the axes at points [tex]\( (0, 9) \)[/tex] and [tex]\( (12, 0) \)[/tex].
Now, solve [tex]\( 6x + 2y = 36 \)[/tex]:
1. When [tex]\( x = 0 \)[/tex], [tex]\( 2y = 36 \rightarrow y = 18 \)[/tex].
2. When [tex]\( y = 0 \)[/tex], [tex]\( 6x = 36 \rightarrow x = 6 \)[/tex].
So, the line intersects the axes at points [tex]\( (0, 18) \)[/tex] and [tex]\( (6, 0) \)[/tex].
Next, find the intersection of [tex]\( 3x + 4y = 36 \)[/tex] and [tex]\( 6x + 2y = 36 \)[/tex]:
[tex]\[ \begin{cases} 3x + 4y = 36 \\ 6x + 2y = 36 \end{cases} \][/tex]
Multiply the first equation by 2:
[tex]\( 6x + 8y = 72 \)[/tex]
Subtract the second equation:
[tex]\( 6x + 8y - 6x - 2y = 72 - 36 \)[/tex]
[tex]\( 6y = 36 \rightarrow y = 6 \)[/tex]
Substitute [tex]\( y = 6 \)[/tex] back into [tex]\( 3x + 4y = 36 \)[/tex]:
[tex]\( 3x + 4(6) = 36 \rightarrow 3x + 24 = 36 \rightarrow 3x = 12 \rightarrow x = 4 \)[/tex]
So, another vertex is [tex]\( (4, 6) \)[/tex].
### Step 4: Evaluate [tex]\( z = x + 2y \)[/tex] at each vertex
The vertices of the feasible region are [tex]\( (0, 9) \)[/tex], [tex]\( (12, 0) \)[/tex], [tex]\( (0, 18) \)[/tex], and [tex]\( (4, 6) \)[/tex].
Evaluate [tex]\( z \)[/tex] at these points:
1. At [tex]\( (0, 9) \)[/tex]: [tex]\( z = 0 + 2(9) = 18 \)[/tex]
2. At [tex]\( (12, 0) \)[/tex]: [tex]\( z = 12 + 2(0) = 12 \)[/tex]
3. At [tex]\( (4, 6) \)[/tex]: [tex]\( z = 4 + 2(6) = 4 + 12 = 16 \)[/tex]
4. At [tex]\( (0, 18) \)[/tex]: This point is not in the feasible region because it does not satisfy [tex]\( 3x + 4y \leq 36 \)[/tex].
### Step 5: Determine the maximum value
The maximum value of [tex]\( z \)[/tex] is [tex]\( 18 \)[/tex] at the point [tex]\( (0, 9) \)[/tex].
### Solution
[tex]\[ \text{Maximum is } 18 \text{ at,} \][/tex]
[tex]\[ \begin{array}{l} x = 0 \\ y = 9 \end{array} \][/tex]
### Step 1: Write down the constraints
We are given the following constraints:
1. [tex]\( 3x + 4y \leq 36 \)[/tex]
2. [tex]\( 6x + 2y \leq 36 \)[/tex]
3. [tex]\( x \geq 0 \)[/tex]
4. [tex]\( y \geq 0 \)[/tex]
### Step 2: Identify the feasible region
The feasible region is determined by the intersection of the constraint inequalities in the [tex]\((x,y)\)[/tex]-plane.
### Step 3: Find the vertices of the feasible region
To find the vertices, we solve the system of inequalities where the lines intersect.
First, solve [tex]\( 3x + 4y = 36 \)[/tex]:
1. When [tex]\( x = 0 \)[/tex], [tex]\( 4y = 36 \rightarrow y = 9 \)[/tex].
2. When [tex]\( y = 0 \)[/tex], [tex]\( 3x = 36 \rightarrow x = 12 \)[/tex].
So, the line intersects the axes at points [tex]\( (0, 9) \)[/tex] and [tex]\( (12, 0) \)[/tex].
Now, solve [tex]\( 6x + 2y = 36 \)[/tex]:
1. When [tex]\( x = 0 \)[/tex], [tex]\( 2y = 36 \rightarrow y = 18 \)[/tex].
2. When [tex]\( y = 0 \)[/tex], [tex]\( 6x = 36 \rightarrow x = 6 \)[/tex].
So, the line intersects the axes at points [tex]\( (0, 18) \)[/tex] and [tex]\( (6, 0) \)[/tex].
Next, find the intersection of [tex]\( 3x + 4y = 36 \)[/tex] and [tex]\( 6x + 2y = 36 \)[/tex]:
[tex]\[ \begin{cases} 3x + 4y = 36 \\ 6x + 2y = 36 \end{cases} \][/tex]
Multiply the first equation by 2:
[tex]\( 6x + 8y = 72 \)[/tex]
Subtract the second equation:
[tex]\( 6x + 8y - 6x - 2y = 72 - 36 \)[/tex]
[tex]\( 6y = 36 \rightarrow y = 6 \)[/tex]
Substitute [tex]\( y = 6 \)[/tex] back into [tex]\( 3x + 4y = 36 \)[/tex]:
[tex]\( 3x + 4(6) = 36 \rightarrow 3x + 24 = 36 \rightarrow 3x = 12 \rightarrow x = 4 \)[/tex]
So, another vertex is [tex]\( (4, 6) \)[/tex].
### Step 4: Evaluate [tex]\( z = x + 2y \)[/tex] at each vertex
The vertices of the feasible region are [tex]\( (0, 9) \)[/tex], [tex]\( (12, 0) \)[/tex], [tex]\( (0, 18) \)[/tex], and [tex]\( (4, 6) \)[/tex].
Evaluate [tex]\( z \)[/tex] at these points:
1. At [tex]\( (0, 9) \)[/tex]: [tex]\( z = 0 + 2(9) = 18 \)[/tex]
2. At [tex]\( (12, 0) \)[/tex]: [tex]\( z = 12 + 2(0) = 12 \)[/tex]
3. At [tex]\( (4, 6) \)[/tex]: [tex]\( z = 4 + 2(6) = 4 + 12 = 16 \)[/tex]
4. At [tex]\( (0, 18) \)[/tex]: This point is not in the feasible region because it does not satisfy [tex]\( 3x + 4y \leq 36 \)[/tex].
### Step 5: Determine the maximum value
The maximum value of [tex]\( z \)[/tex] is [tex]\( 18 \)[/tex] at the point [tex]\( (0, 9) \)[/tex].
### Solution
[tex]\[ \text{Maximum is } 18 \text{ at,} \][/tex]
[tex]\[ \begin{array}{l} x = 0 \\ y = 9 \end{array} \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. IDNLearn.com is your reliable source for answers. We appreciate your visit and look forward to assisting you again soon.