IDNLearn.com provides a collaborative environment for finding accurate answers. Get accurate and comprehensive answers to your questions from our community of knowledgeable professionals.
Sagot :
To solve the integral [tex]\( \int x^2 \cdot\left(x^2-1\right)^{-\frac{3}{2}} \, dx \)[/tex], let's proceed with the solution step-by-step:
1. Identify the integrand:
[tex]\[ x^2 \cdot (x^2 - 1)^{-\frac{3}{2}} \][/tex]
2. Simplify the integrand, if possible:
- In this case, there isn't a straightforward simplification that makes the integral easier using basic algebraic techniques, but it helps to recognize that the integrand involves a composition of polynomial and power functions.
3. Consider an appropriate substitution:
- For integrals involving expressions such as [tex]\(x^2 - 1\)[/tex], it's often effective to use a trigonometric or hyperbolic substitution, although it's also possible to work with direct antiderivatives that involve inverse trigonometric or hyperbolic functions.
4. Integral boundaries and types:
- The integral can be expressed in terms of functions that involve arcsin (inverse sine) or arcosh (inverse hyperbolic cosine) depending on the domain of [tex]\(x\)[/tex].
The resulting integral is a piecewise function due to the nature of [tex]\(x^2 - 1\)[/tex]. The integral solution can be written in different forms depending on the domain of [tex]\(x\)[/tex]. Here, the solution takes into account the absolute value of [tex]\(x^2\)[/tex]:
5. Integral solution:
[tex]\[ \int x^2 \cdot (x^2 - 1)^{-\frac{3}{2}} \, dx = \text{Piecewise}\left( \left(-0.564189583547756 \cdot \sqrt{\pi} \cdot \frac{x}{\sqrt{x^2 - 1}} + 0.564189583547756 \cdot \sqrt{\pi} \cdot \text{acosh}(x), \, \lvert x^2 \rvert > 1 \right), \, \left(0.564189583547756 \cdot i \cdot \sqrt{\pi} \cdot \frac{x}{\sqrt{1 - x^2}} - 0.564189583547756 \cdot i \cdot \sqrt{\pi} \cdot \text{asin}(x), \, \text{True}\right) \right) \][/tex]
These pieces break down based on the condition:
- When [tex]\(|x| > 1\)[/tex], which means [tex]\(x^2 > 1\)[/tex]:
[tex]\[ -0.564189583547756 \cdot \sqrt{\pi} \cdot \frac{x}{\sqrt{x^2 - 1}} + 0.564189583547756 \cdot \sqrt{\pi} \cdot \text{acosh}(x) \][/tex]
- Otherwise, when [tex]\(|x| \le 1\)[/tex]:
[tex]\[ 0.564189583547756 \cdot i \cdot \sqrt{\pi} \cdot \frac{x}{\sqrt{1 - x^2}} - 0.564189583547756 \cdot i \cdot \sqrt{\pi} \cdot \text{asin}(x) \][/tex]
This piecewise solution correctly handles both real and complex domains based on the value of [tex]\(x^2\)[/tex] relative to 1.
6. Simplified Result:
For clarity, the integral solution can also be written more concisely with typical notation conventions:
[tex]\[ \int x^2 \cdot (x^2 - 1)^{-\frac{3}{2}} \, dx = \text{Piecewise}\left(\left(-\frac{\sqrt{\pi}}{2} \cdot \frac{x}{\sqrt{x^2 - 1}} + \frac{\sqrt{\pi}}{2} \cdot \text{acosh}(x), \, (x > 1) \, \text{or} \, (x < -1)\right), \, \left(\frac{i \sqrt{\pi}}{2} \cdot \frac{x - \sqrt{1 - x^2} \cdot \text{asin}(x)}{\sqrt{1 - x^2}}, \, \text{otherwise}\right)\right) \][/tex]
This solution accurately conveys the integral results with respect to the domains of the variable [tex]\(x\)[/tex].
1. Identify the integrand:
[tex]\[ x^2 \cdot (x^2 - 1)^{-\frac{3}{2}} \][/tex]
2. Simplify the integrand, if possible:
- In this case, there isn't a straightforward simplification that makes the integral easier using basic algebraic techniques, but it helps to recognize that the integrand involves a composition of polynomial and power functions.
3. Consider an appropriate substitution:
- For integrals involving expressions such as [tex]\(x^2 - 1\)[/tex], it's often effective to use a trigonometric or hyperbolic substitution, although it's also possible to work with direct antiderivatives that involve inverse trigonometric or hyperbolic functions.
4. Integral boundaries and types:
- The integral can be expressed in terms of functions that involve arcsin (inverse sine) or arcosh (inverse hyperbolic cosine) depending on the domain of [tex]\(x\)[/tex].
The resulting integral is a piecewise function due to the nature of [tex]\(x^2 - 1\)[/tex]. The integral solution can be written in different forms depending on the domain of [tex]\(x\)[/tex]. Here, the solution takes into account the absolute value of [tex]\(x^2\)[/tex]:
5. Integral solution:
[tex]\[ \int x^2 \cdot (x^2 - 1)^{-\frac{3}{2}} \, dx = \text{Piecewise}\left( \left(-0.564189583547756 \cdot \sqrt{\pi} \cdot \frac{x}{\sqrt{x^2 - 1}} + 0.564189583547756 \cdot \sqrt{\pi} \cdot \text{acosh}(x), \, \lvert x^2 \rvert > 1 \right), \, \left(0.564189583547756 \cdot i \cdot \sqrt{\pi} \cdot \frac{x}{\sqrt{1 - x^2}} - 0.564189583547756 \cdot i \cdot \sqrt{\pi} \cdot \text{asin}(x), \, \text{True}\right) \right) \][/tex]
These pieces break down based on the condition:
- When [tex]\(|x| > 1\)[/tex], which means [tex]\(x^2 > 1\)[/tex]:
[tex]\[ -0.564189583547756 \cdot \sqrt{\pi} \cdot \frac{x}{\sqrt{x^2 - 1}} + 0.564189583547756 \cdot \sqrt{\pi} \cdot \text{acosh}(x) \][/tex]
- Otherwise, when [tex]\(|x| \le 1\)[/tex]:
[tex]\[ 0.564189583547756 \cdot i \cdot \sqrt{\pi} \cdot \frac{x}{\sqrt{1 - x^2}} - 0.564189583547756 \cdot i \cdot \sqrt{\pi} \cdot \text{asin}(x) \][/tex]
This piecewise solution correctly handles both real and complex domains based on the value of [tex]\(x^2\)[/tex] relative to 1.
6. Simplified Result:
For clarity, the integral solution can also be written more concisely with typical notation conventions:
[tex]\[ \int x^2 \cdot (x^2 - 1)^{-\frac{3}{2}} \, dx = \text{Piecewise}\left(\left(-\frac{\sqrt{\pi}}{2} \cdot \frac{x}{\sqrt{x^2 - 1}} + \frac{\sqrt{\pi}}{2} \cdot \text{acosh}(x), \, (x > 1) \, \text{or} \, (x < -1)\right), \, \left(\frac{i \sqrt{\pi}}{2} \cdot \frac{x - \sqrt{1 - x^2} \cdot \text{asin}(x)}{\sqrt{1 - x^2}}, \, \text{otherwise}\right)\right) \][/tex]
This solution accurately conveys the integral results with respect to the domains of the variable [tex]\(x\)[/tex].
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com has the solutions you’re looking for. Thanks for visiting, and see you next time for more reliable information.