Discover new information and get your questions answered with IDNLearn.com. Join our community to access reliable and comprehensive responses to your questions from experienced professionals.
Sagot :
Let's analyze the given functions [tex]\( f(x) = -x^2 + 2x + 1 \)[/tex] and [tex]\( g(x) = 2^x \)[/tex] to identify their key features step by step.
### 1. Analyze Decrease Over the Interval [tex]\([1, \infty)\)[/tex]:
- For [tex]\( f(x) = -x^2 + 2x + 1 \)[/tex]:
- The function is a downward-opening parabola (since the coefficient of [tex]\( x^2 \)[/tex] is negative).
- To confirm decreasing behavior, complete the square or find the vertex:
[tex]\[ f(x) = -(x^2 - 2x - 1) = -(x^2 - 2x + 1 - 1) = -(x - 1)^2 + 2. \][/tex]
- The vertex is at [tex]\(x = 1\)[/tex] and the maximum value is at [tex]\( f(1) = 2 \)[/tex]. Therefore, [tex]\( f(x) \)[/tex] is decreasing for [tex]\( x \geq 1 \)[/tex].
- For [tex]\( g(x) = 2^x \)[/tex]:
- [tex]\( g(x) \)[/tex] is an exponential function with base 2.
- The function [tex]\( g(x) \)[/tex] is increasing for all [tex]\( x \)[/tex], so it doesn't decrease for any interval.
Thus, the claim that both functions decrease over the interval [tex]\([1, \infty)\)[/tex] is false.
### 2. Compare the Range:
- Range of [tex]\( f(x) = -x^2 + 2x + 1 \)[/tex]:
- The maximum value occurs at [tex]\( x = 1 \)[/tex], [tex]\( f(1) = 2 \)[/tex].
- Since it opens downwards, the range of [tex]\( f(x) \)[/tex] is:
[tex]\[ (-\infty, 2]. \][/tex]
- Range of [tex]\( g(x) = 2^x \)[/tex]:
- Since [tex]\( g(x) \)[/tex] is an exponential function, the range is:
[tex]\[ (0, \infty). \][/tex]
Thus, the claim that both functions have the same range of [tex]\((- \infty, 2)\)[/tex] is false.
### 3. Compare the [tex]\( x \)[/tex]-Intercepts:
- [tex]\( x \)[/tex]-Intercept of [tex]\( f(x) = -x^2 + 2x + 1 \)[/tex]:
- Set [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ -x^2 + 2x + 1 = 0. \][/tex]
- Solving the quadratic equation:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2 \pm \sqrt{4 + 4}}{-2}. \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{8}}{-2} = 1 \pm \sqrt{2}. \][/tex]
- The [tex]\( x \)[/tex]-intercepts are [tex]\( x = 1 + \sqrt{2} \)[/tex] and [tex]\( x = 1 - \sqrt{2} \)[/tex].
- [tex]\( x \)[/tex]-Intercept of [tex]\( g(x) = 2^x \)[/tex]:
- Set [tex]\( g(x) = 0 \)[/tex]:
- The exponential function [tex]\( 2^x \)[/tex] never crosses the x-axis (it never equals zero), so there is no [tex]\( x \)[/tex]-intercept.
Thus, the claim that both functions have the same [tex]\( x \)[/tex]-intercept of [tex]\((-1, 0)\)[/tex] is false.
### 4. Compare the [tex]\( y \)[/tex]-Intercepts:
- [tex]\( y \)[/tex]-Intercept of [tex]\( f(x) = -x^2 + 2x + 1 \)[/tex]:
- Set [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = -0^2 + 2 \cdot 0 + 1 = 1. \][/tex]
- The [tex]\( y \)[/tex]-intercept is [tex]\( (0, 1) \)[/tex].
- [tex]\( y \)[/tex]-Intercept of [tex]\( g(x) = 2^x \)[/tex]:
- Set [tex]\( x = 0 \)[/tex]:
[tex]\[ g(0) = 2^0 = 1. \][/tex]
- The [tex]\( y \)[/tex]-intercept is [tex]\( (0, 1) \)[/tex].
Thus, the claim that both functions have the same [tex]\( y \)[/tex]-intercept of [tex]\((0, 1)\)[/tex] is true.
### Conclusion:
The only correct statement is:
- Both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] have the same [tex]\( y \)[/tex]-intercept of [tex]\((0, 1)\)[/tex].
### 1. Analyze Decrease Over the Interval [tex]\([1, \infty)\)[/tex]:
- For [tex]\( f(x) = -x^2 + 2x + 1 \)[/tex]:
- The function is a downward-opening parabola (since the coefficient of [tex]\( x^2 \)[/tex] is negative).
- To confirm decreasing behavior, complete the square or find the vertex:
[tex]\[ f(x) = -(x^2 - 2x - 1) = -(x^2 - 2x + 1 - 1) = -(x - 1)^2 + 2. \][/tex]
- The vertex is at [tex]\(x = 1\)[/tex] and the maximum value is at [tex]\( f(1) = 2 \)[/tex]. Therefore, [tex]\( f(x) \)[/tex] is decreasing for [tex]\( x \geq 1 \)[/tex].
- For [tex]\( g(x) = 2^x \)[/tex]:
- [tex]\( g(x) \)[/tex] is an exponential function with base 2.
- The function [tex]\( g(x) \)[/tex] is increasing for all [tex]\( x \)[/tex], so it doesn't decrease for any interval.
Thus, the claim that both functions decrease over the interval [tex]\([1, \infty)\)[/tex] is false.
### 2. Compare the Range:
- Range of [tex]\( f(x) = -x^2 + 2x + 1 \)[/tex]:
- The maximum value occurs at [tex]\( x = 1 \)[/tex], [tex]\( f(1) = 2 \)[/tex].
- Since it opens downwards, the range of [tex]\( f(x) \)[/tex] is:
[tex]\[ (-\infty, 2]. \][/tex]
- Range of [tex]\( g(x) = 2^x \)[/tex]:
- Since [tex]\( g(x) \)[/tex] is an exponential function, the range is:
[tex]\[ (0, \infty). \][/tex]
Thus, the claim that both functions have the same range of [tex]\((- \infty, 2)\)[/tex] is false.
### 3. Compare the [tex]\( x \)[/tex]-Intercepts:
- [tex]\( x \)[/tex]-Intercept of [tex]\( f(x) = -x^2 + 2x + 1 \)[/tex]:
- Set [tex]\( f(x) = 0 \)[/tex]:
[tex]\[ -x^2 + 2x + 1 = 0. \][/tex]
- Solving the quadratic equation:
[tex]\[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{-2 \pm \sqrt{4 + 4}}{-2}. \][/tex]
[tex]\[ x = \frac{-2 \pm \sqrt{8}}{-2} = 1 \pm \sqrt{2}. \][/tex]
- The [tex]\( x \)[/tex]-intercepts are [tex]\( x = 1 + \sqrt{2} \)[/tex] and [tex]\( x = 1 - \sqrt{2} \)[/tex].
- [tex]\( x \)[/tex]-Intercept of [tex]\( g(x) = 2^x \)[/tex]:
- Set [tex]\( g(x) = 0 \)[/tex]:
- The exponential function [tex]\( 2^x \)[/tex] never crosses the x-axis (it never equals zero), so there is no [tex]\( x \)[/tex]-intercept.
Thus, the claim that both functions have the same [tex]\( x \)[/tex]-intercept of [tex]\((-1, 0)\)[/tex] is false.
### 4. Compare the [tex]\( y \)[/tex]-Intercepts:
- [tex]\( y \)[/tex]-Intercept of [tex]\( f(x) = -x^2 + 2x + 1 \)[/tex]:
- Set [tex]\( x = 0 \)[/tex]:
[tex]\[ f(0) = -0^2 + 2 \cdot 0 + 1 = 1. \][/tex]
- The [tex]\( y \)[/tex]-intercept is [tex]\( (0, 1) \)[/tex].
- [tex]\( y \)[/tex]-Intercept of [tex]\( g(x) = 2^x \)[/tex]:
- Set [tex]\( x = 0 \)[/tex]:
[tex]\[ g(0) = 2^0 = 1. \][/tex]
- The [tex]\( y \)[/tex]-intercept is [tex]\( (0, 1) \)[/tex].
Thus, the claim that both functions have the same [tex]\( y \)[/tex]-intercept of [tex]\((0, 1)\)[/tex] is true.
### Conclusion:
The only correct statement is:
- Both [tex]\( f(x) \)[/tex] and [tex]\( g(x) \)[/tex] have the same [tex]\( y \)[/tex]-intercept of [tex]\((0, 1)\)[/tex].
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your questions deserve reliable answers. Thanks for visiting IDNLearn.com, and see you again soon for more helpful information.