Get personalized and accurate responses to your questions with IDNLearn.com. Discover the reliable solutions you need with help from our comprehensive and accurate Q&A platform.

Use the simplex method to solve the linear programming problem.

[tex]\[
\begin{array}{lc}
\text{Maximize} & z = 700 x_1 + 400 x_2 + 100 x_3 \\
\text{subject to} & x_1 + x_2 + x_3 \leq 110 \\
& 2 x_1 + 3 x_2 + 4 x_3 \leq 320 \\
& 2 x_1 + x_2 + x_3 \leq 200 \\
& x_1 \geq 0, x_2 \geq 0, x_3 \geq 0
\end{array}
\][/tex]

Select the correct choice and, if necessary, fill in the answer boxes to complete your choice.

A. Treating [tex]\(x_3\)[/tex] as a nonbasic variable, the maximum is [tex]\(\square\)[/tex] when [tex]\(x_1 = \square\)[/tex], [tex]\(x_2 = \square\)[/tex], [tex]\(x_3 = \square\)[/tex], [tex]\(s_1 = \square\)[/tex], [tex]\(s_2 = \square\)[/tex], and [tex]\(s_3 = \square\)[/tex].


Sagot :

To solve the given linear programming problem using the simplex method, we will summarize the steps and present the solution in a clear format.

The problem is:
[tex]\[ \begin{array}{lc} \text { Maximize } & z=700 x_1+400 x_2+100 x_3 \\ \text { subject to } & x_1+x_2+x_3 \leq 110 \\ & 2 x_1+3 x_2+4 x_3 \leq 320 \\ & 2 x_1+x_2+x_3 \leq 200 \\ & x_1 \geq 0, x_2 \geq 0, x_3 \geq 0 \end{array} \][/tex]

### Step-by-step solution:
1. Standard Form: Convert inequality constraints into equalities by introducing slack variables [tex]\( s_1, s_2, s_3 \)[/tex]:
[tex]\[ \begin{array}{lc} \text{Maximize} & z = 700 x_1 + 400 x_2 + 100 x_3 \\ \text{subject to} & x_1 + x_2 + x_3 + s_1 = 110 \\ & 2 x_1 + 3 x_2 + 4 x_3 + s_2 = 320 \\ & 2 x_1 + x_2 + x_3 + s_3 = 200 \\ & x_1, x_2, x_3, s_1, s_2, s_3 \geq 0 \end{array} \][/tex]

2. Initial Basic Feasible Solution: Assume slack variables are the initial basic variables, and decision variables [tex]\( x_1, x_2, x_3 \)[/tex] are non-basic:
[tex]\[ x_1 = 0, x_2 = 0, x_3 = 0, \, s_1 = 110, s_2 = 320, s_3 = 200 \][/tex]

3. Optimal Solution: By following the simplex algorithm iteratively to find the optimal values, we will get:
- Decision variables: [tex]\( x_1, x_2, x_3 \)[/tex]
- Optimal value of [tex]\( z \)[/tex]
- Slack variables: [tex]\( s_1, s_2, s_3 \)[/tex]

### Final Solution:
From the calculations, let's summarize the optimal solution as follows:
- The maximum value is [tex]\( 71,000 \)[/tex]
- [tex]\( x_1 = 90 \)[/tex]
- [tex]\( x_2 = 20 \)[/tex]
- [tex]\( x_3 = 0 \)[/tex]
- Slack variables:
- [tex]\( s_1 = 0 \)[/tex]
- [tex]\( s_2 = 80 \)[/tex]
- [tex]\( s_3 = 0 \)[/tex]

### Answer
A. Treating [tex]\( x_3 \)[/tex] as a nonbasic variable, the maximum is [tex]\( 71,000 \)[/tex] when:
- [tex]\( x_1 = 90 \)[/tex]
- [tex]\( x_2 = 20 \)[/tex]
- [tex]\( x_3 = 0 \)[/tex]
- [tex]\( s_1 = 0 \)[/tex]
- [tex]\( s_2 = 80 \)[/tex]
- [tex]\( s_3 = 0 \)[/tex]
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Your search for answers ends at IDNLearn.com. Thank you for visiting, and we hope to assist you again soon.