IDNLearn.com offers expert insights and community wisdom to answer your queries. Discover thorough and trustworthy answers from our community of knowledgeable professionals, tailored to meet your specific needs.
Sagot :
To solve this problem, we need to determine the initial quantity of the isotope [tex]\(^{14}C\)[/tex] given its half-life, the time elapsed, and the amount remaining after that time.
Here’s a step-by-step guide to approach the solution:
1. Understand the Exponential Decay Formula:
The quantity of a radioactive substance can be modeled by the exponential decay formula:
[tex]\[ A = A_0 \left( \frac{1}{2} \right)^{\frac{t}{T}} \][/tex]
Where:
- [tex]\( A \)[/tex] is the remaining quantity after time [tex]\( t \)[/tex].
- [tex]\( A_0 \)[/tex] is the initial quantity.
- [tex]\( t \)[/tex] is the elapsed time.
- [tex]\( T \)[/tex] is the half-life of the substance.
2. Identify the Given Values:
- Half-life ([tex]\( T \)[/tex]) = 5715 years
- Time elapsed ([tex]\( t \)[/tex]) = 1000 years
- Remaining quantity after [tex]\( t \)[/tex] years ([tex]\( A \)[/tex]) = 3 grams
3. Rearrange the Formula to Solve for Initial Quantity [tex]\( A_0 \)[/tex]:
We need to find [tex]\( A_0 \)[/tex]. Rearranging the formula for [tex]\( A_0 \)[/tex]:
[tex]\[ A_0 = \frac{A}{\left( \frac{1}{2} \right)^{\frac{t}{T}}} \][/tex]
4. Plug in the Known Values:
Substituting the values into the rearranged formula:
[tex]\[ A_0 = \frac{3}{\left( \frac{1}{2} \right)^{\frac{1000}{5715}}} \][/tex]
5. Compute the Exponential Term:
First, calculate the exponent:
[tex]\[ \frac{1000}{5715} \approx 0.175 \][/tex]
Then, compute the decay factor:
[tex]\[ \left( \frac{1}{2} \right)^{0.175} \approx 0.8825 \][/tex]
6. Calculate the Initial Quantity:
Plugging this back into the equation for [tex]\( A_0 \)[/tex]:
[tex]\[ A_0 = \frac{3}{0.8825} \approx 3.399 \][/tex]
7. Round to Two Decimal Places:
Finally, rounding the result to two decimal places:
[tex]\[ A_0 \approx 3.39 \text{ grams} \][/tex]
So, the initial quantity of the [tex]\(^{14}C\)[/tex] isotope is approximately [tex]\( 3.39 \)[/tex] grams.
Here’s a step-by-step guide to approach the solution:
1. Understand the Exponential Decay Formula:
The quantity of a radioactive substance can be modeled by the exponential decay formula:
[tex]\[ A = A_0 \left( \frac{1}{2} \right)^{\frac{t}{T}} \][/tex]
Where:
- [tex]\( A \)[/tex] is the remaining quantity after time [tex]\( t \)[/tex].
- [tex]\( A_0 \)[/tex] is the initial quantity.
- [tex]\( t \)[/tex] is the elapsed time.
- [tex]\( T \)[/tex] is the half-life of the substance.
2. Identify the Given Values:
- Half-life ([tex]\( T \)[/tex]) = 5715 years
- Time elapsed ([tex]\( t \)[/tex]) = 1000 years
- Remaining quantity after [tex]\( t \)[/tex] years ([tex]\( A \)[/tex]) = 3 grams
3. Rearrange the Formula to Solve for Initial Quantity [tex]\( A_0 \)[/tex]:
We need to find [tex]\( A_0 \)[/tex]. Rearranging the formula for [tex]\( A_0 \)[/tex]:
[tex]\[ A_0 = \frac{A}{\left( \frac{1}{2} \right)^{\frac{t}{T}}} \][/tex]
4. Plug in the Known Values:
Substituting the values into the rearranged formula:
[tex]\[ A_0 = \frac{3}{\left( \frac{1}{2} \right)^{\frac{1000}{5715}}} \][/tex]
5. Compute the Exponential Term:
First, calculate the exponent:
[tex]\[ \frac{1000}{5715} \approx 0.175 \][/tex]
Then, compute the decay factor:
[tex]\[ \left( \frac{1}{2} \right)^{0.175} \approx 0.8825 \][/tex]
6. Calculate the Initial Quantity:
Plugging this back into the equation for [tex]\( A_0 \)[/tex]:
[tex]\[ A_0 = \frac{3}{0.8825} \approx 3.399 \][/tex]
7. Round to Two Decimal Places:
Finally, rounding the result to two decimal places:
[tex]\[ A_0 \approx 3.39 \text{ grams} \][/tex]
So, the initial quantity of the [tex]\(^{14}C\)[/tex] isotope is approximately [tex]\( 3.39 \)[/tex] grams.
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. IDNLearn.com is dedicated to providing accurate answers. Thank you for visiting, and see you next time for more solutions.