Get comprehensive solutions to your problems with IDNLearn.com. Ask your questions and receive detailed and reliable answers from our experienced and knowledgeable community members.
Sagot :
To solve this problem, we need to determine [tex]\( f(0) \)[/tex], [tex]\( f'(0) \)[/tex], and [tex]\( f'(x) \)[/tex] based on the given functional equations and limit condition.
### Step 1: Find [tex]\( f(0) \)[/tex]
We start by evaluating the functional equation for [tex]\( x = 0 \)[/tex].
[tex]\[ f(x + 0) = f(x) + f(0) + 0^2 \cdot y + 0 \cdot y^2 \][/tex]
[tex]\[ f(x) = f(x) + f(0) \][/tex]
Since [tex]\( f(x) = f(x) + f(0) \)[/tex] must hold for all [tex]\( x \)[/tex], it follows that:
[tex]\[ f(0) = 0 \][/tex]
### Step 2: Find [tex]\( f'(0) \)[/tex]
Given the limit condition:
[tex]\[ \lim_{x \to 0} \frac{f(x)}{x} = 1 \][/tex]
This implies the derivative of [tex]\( f \)[/tex] at 0, denoted [tex]\( f'(0) \)[/tex], is given by:
[tex]\[ f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{f(x)}{x} = 1 \][/tex]
Therefore:
[tex]\[ f'(0) = 1 \][/tex]
### Step 3: Find [tex]\( f'(x) \)[/tex]
To find the derivative [tex]\( f'(x) \)[/tex], we differentiate both sides of the functional equation [tex]\( f(x + y) = f(x) + f(y) + x^2 y + x y^2 \)[/tex] with respect to [tex]\( x \)[/tex].
[tex]\[ \frac{d}{dx}\left[ f(x + y) \right] = \frac{d}{dx}\left[ f(x) + f(y) + x^2 y + x y^2 \right] \][/tex]
[tex]\[ f'(x + y) = f'(x) + \frac{d}{dx}[x^2 y] + \frac{d}{dx}[x y^2] \][/tex]
[tex]\[ f'(x + y) = f'(x) + 2xy + y^2 \][/tex]
Next, let [tex]\( y = 0 \)[/tex] in the expression:
[tex]\[ f'(x + 0) = f'(x) + 2x \cdot 0 + 0^2 \][/tex]
[tex]\[ f'(x) = f'(x) + 0 \][/tex]
This does not give new information directly. Instead, we now differentiate the limit expression:
Since the original functional equation, when differentiated with [tex]\( y \neq 0 \)[/tex], suggests the general form of [tex]\( f'(x) \)[/tex]. Consider starting with the limit:
[tex]\[ \lim_{x \to 0} \frac{f(x)}{x} = 1 \][/tex]
We know [tex]\( f(x) \approx x \)[/tex] as [tex]\( x \to 0 \)[/tex], suggesting [tex]\( f(x) = x + h(x) \)[/tex], where [tex]\( h(x) \)[/tex] is such that [tex]\( \lim_{x \to 0} \frac{h(x)}{x} = 0 \)[/tex]. Differentiating directly:
[tex]\[ f'(x) = 1 + h'(x) \][/tex]
Given [tex]\( \frac{d}{dx}[2xy + y^2] = 2xy + y^2 \)[/tex],
comparing with the equation suggests:
Thus from above direct differentiation,
Thus,
[tex]\[ f'(x + y) = f'(x) + 2xy + y^2 \][/tex]
Thus functional equality holds,
Thus [tex]\(f'(x) = x + 1\)[/tex],
Finally:
[tex]\[ f'(x)= x+1 \][/tex]
### Final Results:
- [tex]\( f(0) = 0 \)[/tex]
- [tex]\( f'(0) = 1 \)[/tex]
- [tex]\( f'(x) = x + 1 \)[/tex]
### Step 1: Find [tex]\( f(0) \)[/tex]
We start by evaluating the functional equation for [tex]\( x = 0 \)[/tex].
[tex]\[ f(x + 0) = f(x) + f(0) + 0^2 \cdot y + 0 \cdot y^2 \][/tex]
[tex]\[ f(x) = f(x) + f(0) \][/tex]
Since [tex]\( f(x) = f(x) + f(0) \)[/tex] must hold for all [tex]\( x \)[/tex], it follows that:
[tex]\[ f(0) = 0 \][/tex]
### Step 2: Find [tex]\( f'(0) \)[/tex]
Given the limit condition:
[tex]\[ \lim_{x \to 0} \frac{f(x)}{x} = 1 \][/tex]
This implies the derivative of [tex]\( f \)[/tex] at 0, denoted [tex]\( f'(0) \)[/tex], is given by:
[tex]\[ f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x} = \lim_{x \to 0} \frac{f(x)}{x} = 1 \][/tex]
Therefore:
[tex]\[ f'(0) = 1 \][/tex]
### Step 3: Find [tex]\( f'(x) \)[/tex]
To find the derivative [tex]\( f'(x) \)[/tex], we differentiate both sides of the functional equation [tex]\( f(x + y) = f(x) + f(y) + x^2 y + x y^2 \)[/tex] with respect to [tex]\( x \)[/tex].
[tex]\[ \frac{d}{dx}\left[ f(x + y) \right] = \frac{d}{dx}\left[ f(x) + f(y) + x^2 y + x y^2 \right] \][/tex]
[tex]\[ f'(x + y) = f'(x) + \frac{d}{dx}[x^2 y] + \frac{d}{dx}[x y^2] \][/tex]
[tex]\[ f'(x + y) = f'(x) + 2xy + y^2 \][/tex]
Next, let [tex]\( y = 0 \)[/tex] in the expression:
[tex]\[ f'(x + 0) = f'(x) + 2x \cdot 0 + 0^2 \][/tex]
[tex]\[ f'(x) = f'(x) + 0 \][/tex]
This does not give new information directly. Instead, we now differentiate the limit expression:
Since the original functional equation, when differentiated with [tex]\( y \neq 0 \)[/tex], suggests the general form of [tex]\( f'(x) \)[/tex]. Consider starting with the limit:
[tex]\[ \lim_{x \to 0} \frac{f(x)}{x} = 1 \][/tex]
We know [tex]\( f(x) \approx x \)[/tex] as [tex]\( x \to 0 \)[/tex], suggesting [tex]\( f(x) = x + h(x) \)[/tex], where [tex]\( h(x) \)[/tex] is such that [tex]\( \lim_{x \to 0} \frac{h(x)}{x} = 0 \)[/tex]. Differentiating directly:
[tex]\[ f'(x) = 1 + h'(x) \][/tex]
Given [tex]\( \frac{d}{dx}[2xy + y^2] = 2xy + y^2 \)[/tex],
comparing with the equation suggests:
Thus from above direct differentiation,
Thus,
[tex]\[ f'(x + y) = f'(x) + 2xy + y^2 \][/tex]
Thus functional equality holds,
Thus [tex]\(f'(x) = x + 1\)[/tex],
Finally:
[tex]\[ f'(x)= x+1 \][/tex]
### Final Results:
- [tex]\( f(0) = 0 \)[/tex]
- [tex]\( f'(0) = 1 \)[/tex]
- [tex]\( f'(x) = x + 1 \)[/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Your questions find answers at IDNLearn.com. Thanks for visiting, and come back for more accurate and reliable solutions.