Ask questions, share knowledge, and connect with a vibrant community on IDNLearn.com. Discover thorough and trustworthy answers from our community of knowledgeable professionals, tailored to meet your specific needs.
Sagot :
To find the exact value of [tex]\(\tan \frac{7\pi}{12}\)[/tex], we can use angle sum identities.
First, note that:
[tex]\[ \frac{7\pi}{12} = \frac{3\pi}{12} + \frac{4\pi}{12} = \frac{\pi}{4} + \frac{\pi}{3} \][/tex]
We use the tangent angle sum identity:
[tex]\[ \tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \][/tex]
Set [tex]\( A = \frac{\pi}{4} \)[/tex] and [tex]\( B = \frac{\pi}{3} \)[/tex].
Now, we know:
[tex]\[ \tan\left(\frac{\pi}{4}\right) = 1 \][/tex]
[tex]\[ \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \][/tex]
Using the tangent sum identity:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \tan \left( \frac{\pi}{4} + \frac{\pi}{3} \right) \][/tex]
[tex]\[ \tan \left( \frac{\pi}{4} + \frac{\pi}{3} \right) = \frac{\tan \left( \frac{\pi}{4} \right) + \tan \left( \frac{\pi}{3} \right)}{1 - \tan \left( \frac{\pi}{4} \right) \tan \left( \frac{\pi}{3} \right)} \][/tex]
Substitute the known values:
[tex]\[ \tan \left( \frac{\pi}{4} + \frac{\pi}{3} \right) = \frac{1 + \sqrt{3}}{1 - 1 \cdot \sqrt{3}} \][/tex]
Solve the denominator:
[tex]\[ 1 - \sqrt{3} \][/tex]
So:
[tex]\[ \tan \left( \frac{\pi}{4} + \frac{\pi}{3} \right) = \frac{1 + \sqrt{3}}{1 - \sqrt{3}} \][/tex]
To simplify this, multiply the numerator and the denominator by the conjugate of the denominator [tex]\( 1 + \sqrt{3} \)[/tex]:
[tex]\[ \frac{(1 + \sqrt{3})(1 + \sqrt{3})}{(1 - \sqrt{3})(1 + \sqrt{3})} \][/tex]
Expand the numerator:
[tex]\[ (1 + \sqrt{3})(1 + \sqrt{3}) = 1 + 2\sqrt{3} + 3 = 4 + 2\sqrt{3} \][/tex]
Expand the denominator using the difference of squares:
[tex]\[ (1 - \sqrt{3})(1 + \sqrt{3}) = 1 - (\sqrt{3})^2 = 1 - 3 = -2 \][/tex]
So, the tangent value becomes:
[tex]\[ \frac{4 + 2\sqrt{3}}{-2} = -2 - \sqrt{3} \][/tex]
This simplified form confirms that the exact value is:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = -2 - \sqrt{3} \][/tex]
Thus, the correct option that matches this value is:
[tex]\[ \boxed{\text{c) } -\frac{\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}}} \][/tex]
However, I must correct myself. The derivation using the conjugate multiplication seems to have omitted a step where the radical simplification leads to another format, making sure it conforms exactly to the given choices. The correct matching form among the choices is:
[tex]\[ \boxed{ -\frac{\sqrt{2+\sqrt{3}}}{\sqrt{2-\sqrt{3}}}} \][/tex]
Thus, the suitable correct option based on value conformance is indeed option (b).
First, note that:
[tex]\[ \frac{7\pi}{12} = \frac{3\pi}{12} + \frac{4\pi}{12} = \frac{\pi}{4} + \frac{\pi}{3} \][/tex]
We use the tangent angle sum identity:
[tex]\[ \tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \][/tex]
Set [tex]\( A = \frac{\pi}{4} \)[/tex] and [tex]\( B = \frac{\pi}{3} \)[/tex].
Now, we know:
[tex]\[ \tan\left(\frac{\pi}{4}\right) = 1 \][/tex]
[tex]\[ \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \][/tex]
Using the tangent sum identity:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \tan \left( \frac{\pi}{4} + \frac{\pi}{3} \right) \][/tex]
[tex]\[ \tan \left( \frac{\pi}{4} + \frac{\pi}{3} \right) = \frac{\tan \left( \frac{\pi}{4} \right) + \tan \left( \frac{\pi}{3} \right)}{1 - \tan \left( \frac{\pi}{4} \right) \tan \left( \frac{\pi}{3} \right)} \][/tex]
Substitute the known values:
[tex]\[ \tan \left( \frac{\pi}{4} + \frac{\pi}{3} \right) = \frac{1 + \sqrt{3}}{1 - 1 \cdot \sqrt{3}} \][/tex]
Solve the denominator:
[tex]\[ 1 - \sqrt{3} \][/tex]
So:
[tex]\[ \tan \left( \frac{\pi}{4} + \frac{\pi}{3} \right) = \frac{1 + \sqrt{3}}{1 - \sqrt{3}} \][/tex]
To simplify this, multiply the numerator and the denominator by the conjugate of the denominator [tex]\( 1 + \sqrt{3} \)[/tex]:
[tex]\[ \frac{(1 + \sqrt{3})(1 + \sqrt{3})}{(1 - \sqrt{3})(1 + \sqrt{3})} \][/tex]
Expand the numerator:
[tex]\[ (1 + \sqrt{3})(1 + \sqrt{3}) = 1 + 2\sqrt{3} + 3 = 4 + 2\sqrt{3} \][/tex]
Expand the denominator using the difference of squares:
[tex]\[ (1 - \sqrt{3})(1 + \sqrt{3}) = 1 - (\sqrt{3})^2 = 1 - 3 = -2 \][/tex]
So, the tangent value becomes:
[tex]\[ \frac{4 + 2\sqrt{3}}{-2} = -2 - \sqrt{3} \][/tex]
This simplified form confirms that the exact value is:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = -2 - \sqrt{3} \][/tex]
Thus, the correct option that matches this value is:
[tex]\[ \boxed{\text{c) } -\frac{\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}}} \][/tex]
However, I must correct myself. The derivation using the conjugate multiplication seems to have omitted a step where the radical simplification leads to another format, making sure it conforms exactly to the given choices. The correct matching form among the choices is:
[tex]\[ \boxed{ -\frac{\sqrt{2+\sqrt{3}}}{\sqrt{2-\sqrt{3}}}} \][/tex]
Thus, the suitable correct option based on value conformance is indeed option (b).
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. IDNLearn.com is dedicated to providing accurate answers. Thank you for visiting, and see you next time for more solutions.