Join IDNLearn.com today and start getting the answers you've been searching for. Our experts provide timely and accurate responses to help you navigate any topic or issue with confidence.

Find the exact value without using a calculator:

[tex]\[\tan \frac{7 \pi}{12}\][/tex]

Half-Angle Formulas:
[tex]\[\sin \left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \cos \theta}{2}}\][/tex]
[tex]\[\cos \left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 + \cos \theta}{2}}\][/tex]
[tex]\[\tan \left(\frac{\theta}{2}\right) = \pm \sqrt{\frac{1 - \cos \theta}{1 + \cos \theta}}\][/tex]

a) [tex]\[-\frac{\sqrt{2+\sqrt{3}}}{2}\][/tex]

b) [tex]\[-\frac{\sqrt{2+\sqrt{3}}}{\sqrt{2-\sqrt{3}}}\][/tex]

c) [tex]\[-\frac{\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}}\][/tex]

d) [tex]\[\frac{\sqrt{2+\sqrt{3}}}{2}\][/tex]


Sagot :

To find the exact value of [tex]\(\tan \frac{7\pi}{12}\)[/tex], we can use angle sum identities.

First, note that:
[tex]\[ \frac{7\pi}{12} = \frac{3\pi}{12} + \frac{4\pi}{12} = \frac{\pi}{4} + \frac{\pi}{3} \][/tex]

We use the tangent angle sum identity:
[tex]\[ \tan (A + B) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \][/tex]

Set [tex]\( A = \frac{\pi}{4} \)[/tex] and [tex]\( B = \frac{\pi}{3} \)[/tex].

Now, we know:

[tex]\[ \tan\left(\frac{\pi}{4}\right) = 1 \][/tex]
[tex]\[ \tan\left(\frac{\pi}{3}\right) = \sqrt{3} \][/tex]

Using the tangent sum identity:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = \tan \left( \frac{\pi}{4} + \frac{\pi}{3} \right) \][/tex]

[tex]\[ \tan \left( \frac{\pi}{4} + \frac{\pi}{3} \right) = \frac{\tan \left( \frac{\pi}{4} \right) + \tan \left( \frac{\pi}{3} \right)}{1 - \tan \left( \frac{\pi}{4} \right) \tan \left( \frac{\pi}{3} \right)} \][/tex]

Substitute the known values:
[tex]\[ \tan \left( \frac{\pi}{4} + \frac{\pi}{3} \right) = \frac{1 + \sqrt{3}}{1 - 1 \cdot \sqrt{3}} \][/tex]

Solve the denominator:
[tex]\[ 1 - \sqrt{3} \][/tex]

So:
[tex]\[ \tan \left( \frac{\pi}{4} + \frac{\pi}{3} \right) = \frac{1 + \sqrt{3}}{1 - \sqrt{3}} \][/tex]

To simplify this, multiply the numerator and the denominator by the conjugate of the denominator [tex]\( 1 + \sqrt{3} \)[/tex]:
[tex]\[ \frac{(1 + \sqrt{3})(1 + \sqrt{3})}{(1 - \sqrt{3})(1 + \sqrt{3})} \][/tex]

Expand the numerator:
[tex]\[ (1 + \sqrt{3})(1 + \sqrt{3}) = 1 + 2\sqrt{3} + 3 = 4 + 2\sqrt{3} \][/tex]

Expand the denominator using the difference of squares:
[tex]\[ (1 - \sqrt{3})(1 + \sqrt{3}) = 1 - (\sqrt{3})^2 = 1 - 3 = -2 \][/tex]

So, the tangent value becomes:
[tex]\[ \frac{4 + 2\sqrt{3}}{-2} = -2 - \sqrt{3} \][/tex]

This simplified form confirms that the exact value is:
[tex]\[ \tan \left( \frac{7\pi}{12} \right) = -2 - \sqrt{3} \][/tex]

Thus, the correct option that matches this value is:
[tex]\[ \boxed{\text{c) } -\frac{\sqrt{2-\sqrt{3}}}{\sqrt{2+\sqrt{3}}}} \][/tex]

However, I must correct myself. The derivation using the conjugate multiplication seems to have omitted a step where the radical simplification leads to another format, making sure it conforms exactly to the given choices. The correct matching form among the choices is:

[tex]\[ \boxed{ -\frac{\sqrt{2+\sqrt{3}}}{\sqrt{2-\sqrt{3}}}} \][/tex]

Thus, the suitable correct option based on value conformance is indeed option (b).