Find the best answers to your questions with the help of IDNLearn.com's knowledgeable users. Discover comprehensive answers to your questions from our community of knowledgeable experts.
Sagot :
To find the derivative of the integral
[tex]\[ \frac{d}{dx} \int_{x^2}^{x^3} \frac{\ln(t)}{t} \, dt, \][/tex]
we will use the Leibniz rule for differentiation under the integral sign with variable limits of integration.
The Leibniz rule states that if you have an integral of the form
[tex]\[ F(x) = \int_{a(x)}^{b(x)} f(t) \, dt, \][/tex]
then
[tex]\[ \frac{dF}{dx} = f(b(x)) \cdot \frac{db}{dx} - f(a(x)) \cdot \frac{da}{dx}. \][/tex]
Here, our integral is
[tex]\[ \int_{x^2}^{x^3} \frac{\ln(t)}{t} \, dt. \][/tex]
Let's identify the functions involved:
- The integrand [tex]\( f(t) = \frac{\ln(t)}{t} \)[/tex].
- The upper limit of integration [tex]\( b(x) = x^3 \)[/tex].
- The lower limit of integration [tex]\( a(x) = x^2 \)[/tex].
Now we will differentiate the integral according to the Leibniz rule:
1. Evaluate the integrand [tex]\( f(t) \)[/tex] at the upper limit [tex]\( t = x^3 \)[/tex]:
[tex]\[ f(x^3) = \frac{\ln(x^3)}{x^3}. \][/tex]
2. Evaluate the integrand [tex]\( f(t) \)[/tex] at the lower limit [tex]\( t = x^2 \)[/tex]:
[tex]\[ f(x^2) = \frac{\ln(x^2)}{x^2}. \][/tex]
3. Differentiate the upper limit [tex]\( b(x) = x^3 \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} (x^3) = 3x^2. \][/tex]
4. Differentiate the lower limit [tex]\( a(x) = x^2 \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} (x^2) = 2x. \][/tex]
Putting everything together, according to the Leibniz rule:
[tex]\[ \frac{d}{dx} \int_{x^2}^{x^3} \frac{\ln(t)}{t} \, dt = \frac{\ln(x^3)}{x^3} \cdot 3x^2 - \frac{\ln(x^2)}{x^2} \cdot 2x. \][/tex]
Simplify the expression:
- Note that [tex]\(\ln(x^3) = 3 \ln(x)\)[/tex]:
[tex]\[ \frac{\ln(x^3)}{x^3} = \frac{3 \ln(x)}{x^3}. \][/tex]
- Similarly, [tex]\(\ln(x^2) = 2 \ln(x)\)[/tex]:
[tex]\[ \frac{\ln(x^2)}{x^2} = \frac{2 \ln(x)}{x^2}. \][/tex]
Substitute these back into the derivative expression:
[tex]\[ \frac{d}{dx} \int_{x^2}^{x^3} \frac{\ln(t)}{t} \, dt = \frac{3 \ln(x)}{x^3} \cdot 3x^2 - \frac{2 \ln(x)}{x^2} \cdot 2x. \][/tex]
[tex]\[ \frac{d}{dx} \int_{x^2}^{x^3} \frac{\ln(t)}{t} \, dt = \frac{3 \cdot 3 \ln(x) x^2}{x^3} - \frac{2 \cdot 2 \ln(x) x}{x^2}. \][/tex]
[tex]\[ \frac{d}{dx} \int_{x^2}^{x^3} \frac{\ln(t)}{t} \, dt = \frac{9 \ln(x) x^2}{x^3} - \frac{4 \ln(x) x}{x^2}. \][/tex]
[tex]\[ = 9 \frac{\ln(x)}{x} - 4 \frac{\ln(x)}{x}. \][/tex]
[tex]\[ = (9 - 4) \frac{\ln(x)}{x}. \][/tex]
[tex]\[ = 5 \frac{\ln(x)}{x}. \][/tex]
Therefore, the final expression is
[tex]\[ \frac{d}{dx} \int_{x^2}^{x^3} \frac{\ln(t)}{t} \, dt = 5 \frac{\ln(x)}{x}. \][/tex]
[tex]\[ \frac{d}{dx} \int_{x^2}^{x^3} \frac{\ln(t)}{t} \, dt, \][/tex]
we will use the Leibniz rule for differentiation under the integral sign with variable limits of integration.
The Leibniz rule states that if you have an integral of the form
[tex]\[ F(x) = \int_{a(x)}^{b(x)} f(t) \, dt, \][/tex]
then
[tex]\[ \frac{dF}{dx} = f(b(x)) \cdot \frac{db}{dx} - f(a(x)) \cdot \frac{da}{dx}. \][/tex]
Here, our integral is
[tex]\[ \int_{x^2}^{x^3} \frac{\ln(t)}{t} \, dt. \][/tex]
Let's identify the functions involved:
- The integrand [tex]\( f(t) = \frac{\ln(t)}{t} \)[/tex].
- The upper limit of integration [tex]\( b(x) = x^3 \)[/tex].
- The lower limit of integration [tex]\( a(x) = x^2 \)[/tex].
Now we will differentiate the integral according to the Leibniz rule:
1. Evaluate the integrand [tex]\( f(t) \)[/tex] at the upper limit [tex]\( t = x^3 \)[/tex]:
[tex]\[ f(x^3) = \frac{\ln(x^3)}{x^3}. \][/tex]
2. Evaluate the integrand [tex]\( f(t) \)[/tex] at the lower limit [tex]\( t = x^2 \)[/tex]:
[tex]\[ f(x^2) = \frac{\ln(x^2)}{x^2}. \][/tex]
3. Differentiate the upper limit [tex]\( b(x) = x^3 \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} (x^3) = 3x^2. \][/tex]
4. Differentiate the lower limit [tex]\( a(x) = x^2 \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{d}{dx} (x^2) = 2x. \][/tex]
Putting everything together, according to the Leibniz rule:
[tex]\[ \frac{d}{dx} \int_{x^2}^{x^3} \frac{\ln(t)}{t} \, dt = \frac{\ln(x^3)}{x^3} \cdot 3x^2 - \frac{\ln(x^2)}{x^2} \cdot 2x. \][/tex]
Simplify the expression:
- Note that [tex]\(\ln(x^3) = 3 \ln(x)\)[/tex]:
[tex]\[ \frac{\ln(x^3)}{x^3} = \frac{3 \ln(x)}{x^3}. \][/tex]
- Similarly, [tex]\(\ln(x^2) = 2 \ln(x)\)[/tex]:
[tex]\[ \frac{\ln(x^2)}{x^2} = \frac{2 \ln(x)}{x^2}. \][/tex]
Substitute these back into the derivative expression:
[tex]\[ \frac{d}{dx} \int_{x^2}^{x^3} \frac{\ln(t)}{t} \, dt = \frac{3 \ln(x)}{x^3} \cdot 3x^2 - \frac{2 \ln(x)}{x^2} \cdot 2x. \][/tex]
[tex]\[ \frac{d}{dx} \int_{x^2}^{x^3} \frac{\ln(t)}{t} \, dt = \frac{3 \cdot 3 \ln(x) x^2}{x^3} - \frac{2 \cdot 2 \ln(x) x}{x^2}. \][/tex]
[tex]\[ \frac{d}{dx} \int_{x^2}^{x^3} \frac{\ln(t)}{t} \, dt = \frac{9 \ln(x) x^2}{x^3} - \frac{4 \ln(x) x}{x^2}. \][/tex]
[tex]\[ = 9 \frac{\ln(x)}{x} - 4 \frac{\ln(x)}{x}. \][/tex]
[tex]\[ = (9 - 4) \frac{\ln(x)}{x}. \][/tex]
[tex]\[ = 5 \frac{\ln(x)}{x}. \][/tex]
Therefore, the final expression is
[tex]\[ \frac{d}{dx} \int_{x^2}^{x^3} \frac{\ln(t)}{t} \, dt = 5 \frac{\ln(x)}{x}. \][/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com is your reliable source for answers. We appreciate your visit and look forward to assisting you again soon.