IDNLearn.com provides a user-friendly platform for finding and sharing accurate answers. Get timely and accurate answers to your questions from our dedicated community of experts who are here to help you.

The model for long-term average temperature [tex]\( f(x) \)[/tex], in degrees Celsius, at the Wilburn airport is represented by the equation [tex]\( f(x)=5 \cos \left(\frac{x}{12}\right)+14.5 \)[/tex]. If [tex]\( x \)[/tex] represents the month of the year, in which months will the temperature be [tex]\( 17^{\circ} C \)[/tex]?

A. [tex]\( x=\frac{\pi}{3}+24 \pi n \)[/tex] and [tex]\( x=\frac{5 \pi}{3}+24 \pi n \)[/tex]

B. [tex]\( x=\frac{\pi}{3}+2 \pi n \)[/tex] and [tex]\( x=\frac{5 \pi}{3}+2 \pi n \)[/tex]

C. [tex]\( x=4 \pi+24 \pi n \)[/tex] and [tex]\( x=20 \pi+24 \pi n \)[/tex]

D. [tex]\( x=4 \pi+2 \pi n \)[/tex] and [tex]\( x=20 \pi+2 \pi n \)[/tex]


Sagot :

To determine the months during which the temperature at the Willburn airport is [tex]\( 17^\circ C \)[/tex], we'll start by solving the given equation for [tex]\( x \)[/tex], the month of the year.

The given temperature model is:

[tex]\[ f(x) = 5 \cos \left(\frac{x}{12}\right) + 14.5 \][/tex]

We need to find the values of [tex]\( x \)[/tex] for which [tex]\( f(x) = 17 \)[/tex]. Thus, we set up the equation:

[tex]\[ 5 \cos \left(\frac{x}{12}\right) + 14.5 = 17 \][/tex]

Subtract 14.5 from both sides of the equation to isolate the cosine term:

[tex]\[ 5 \cos \left(\frac{x}{12}\right) = 2.5 \][/tex]

Divide both sides by 5:

[tex]\[ \cos \left(\frac{x}{12}\right) = \frac{2.5}{5} \][/tex]
[tex]\[ \cos \left(\frac{x}{12}\right) = \frac{1}{2} \][/tex]

The general solutions for the equation [tex]\( \cos y = \frac{1}{2} \)[/tex] are:

[tex]\[ y = \pm \frac{\pi}{3} + 2k\pi \][/tex]
(where [tex]\( k \)[/tex] is any integer)

Since [tex]\( y = \frac{x}{12} \)[/tex], substitute back:

[tex]\[ \frac{x}{12} = \pm \frac{\pi}{3} + 2k\pi \][/tex]

Multiply through by 12 to solve for [tex]\( x \)[/tex]:

[tex]\[ x = 12 \left( \pm \frac{\pi}{3} + 2k\pi \right) \][/tex]

This gives:

[tex]\[ x = 12 \left( \frac{\pi}{3} + 2k\pi \right) \][/tex]
[tex]\[ x = 12 \cdot \frac{\pi}{3} + 24k\pi \][/tex]
[tex]\[ x = 4\pi + 24k\pi \][/tex]

And:

[tex]\[ x = 12 \left( -\frac{\pi}{3} + 2k\pi \right) \][/tex]
[tex]\[ x = 12 \cdot -\frac{\pi}{3} + 24k\pi \][/tex]
[tex]\[ x = -4\pi + 24k\pi \][/tex]

These values of [tex]\( x \)[/tex] represent months as a continuous variable. For simplicity, we then evaluate these solutions modulo [tex]\( 2\pi \)[/tex].

We note that since [tex]\( x \)[/tex] stands for months and should be within the range of a year, we simplify using modulo [tex]\( 24\pi \)[/tex] to find relevant months within the first 12 months (since [tex]\( 24\pi \)[/tex] corresponds to 12 months):

[tex]\[ 4\pi \mod 24\pi = 4\pi \][/tex]

For [tex]\( x = 4\pi \)[/tex], convert it to months:

[tex]\[ 4\pi \times \frac{12}{2\pi} = 24 \div 2 = 2 \][/tex]

Next,

[tex]\[ 20\pi \mod 24\pi = 20\pi \][/tex]

For [tex]\( x = 20\pi \)[/tex], convert it to months:

[tex]\[ 20\pi \times \frac{12}{2\pi} = 120 \div 2 = 10 \][/tex]

Thus, the months in which the temperature will be [tex]\( 17^\circ C \)[/tex] are:

[tex]\[ x = 4\pi + 24k\pi \][/tex]
[tex]\[ x = 20\pi + 24k\pi \][/tex]

These correspond to the months found through calculation: the 4th month (April) and the 10th month (October).

The correct answer is then the fourth given option:

[tex]\[ x = 4\pi + 2\pi n \][/tex]
[tex]\[ x = 20\pi + 2\pi n \][/tex]