IDNLearn.com provides a user-friendly platform for finding and sharing accurate answers. Discover the information you need from our experienced professionals who provide accurate and reliable answers to all your questions.
Sagot :
To determine the time it will take for a 50 mg sample of a radioactive element to decay to 10 mg given the exponential decay model [tex]\( P(t) = P_0 e^{-0.004261t} \)[/tex], follow these steps:
1. Identify the given quantities:
- Initial amount ([tex]\( P_0 \)[/tex]): 50 mg
- Final amount ([tex]\( P(t) \)[/tex]): 10 mg
- Decay constant ([tex]\( k \)[/tex]): 0.004261
2. Set up the equation:
The formula for radioactive decay is:
[tex]\[ P(t) = P_0 e^{-kt} \][/tex]
Substituting the given values, we get:
[tex]\[ 10 = 50 e^{-0.004261t} \][/tex]
3. Isolate the exponential term:
Divide both sides of the equation by 50 to isolate the exponential expression:
[tex]\[ \frac{10}{50} = e^{-0.004261t} \][/tex]
Simplify the fraction:
[tex]\[ 0.2 = e^{-0.004261t} \][/tex]
4. Take the natural logarithm of both sides:
Applying the natural logarithm [tex]\( \ln \)[/tex] to both sides of the equation allows us to solve for [tex]\( t \)[/tex]:
[tex]\[ \ln(0.2) = \ln(e^{-0.004261t}) \][/tex]
Using the property of logarithms [tex]\( \ln(e^x) = x \)[/tex], we get:
[tex]\[ \ln(0.2) = -0.004261t \][/tex]
5. Solve for [tex]\( t \)[/tex]:
Rearrange the equation to solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{\ln(0.2)}{-0.004261} \][/tex]
6. Calculate [tex]\( \ln(0.2) \)[/tex] and then [tex]\( t \)[/tex]:
Compute [tex]\( t \)[/tex] using the given decay constant:
[tex]\[ t = \frac{\ln(0.2)}{-0.004261} \][/tex]
By solving this, we get:
[tex]\[ t \approx 377.71366168366586 \][/tex]
7. Round the final answer to one decimal place:
[tex]\[ t \approx 377.7 \][/tex]
Hence, it will take approximately 377.7 days for a 50 mg sample of the radioactive element to decay to 10 mg.
1. Identify the given quantities:
- Initial amount ([tex]\( P_0 \)[/tex]): 50 mg
- Final amount ([tex]\( P(t) \)[/tex]): 10 mg
- Decay constant ([tex]\( k \)[/tex]): 0.004261
2. Set up the equation:
The formula for radioactive decay is:
[tex]\[ P(t) = P_0 e^{-kt} \][/tex]
Substituting the given values, we get:
[tex]\[ 10 = 50 e^{-0.004261t} \][/tex]
3. Isolate the exponential term:
Divide both sides of the equation by 50 to isolate the exponential expression:
[tex]\[ \frac{10}{50} = e^{-0.004261t} \][/tex]
Simplify the fraction:
[tex]\[ 0.2 = e^{-0.004261t} \][/tex]
4. Take the natural logarithm of both sides:
Applying the natural logarithm [tex]\( \ln \)[/tex] to both sides of the equation allows us to solve for [tex]\( t \)[/tex]:
[tex]\[ \ln(0.2) = \ln(e^{-0.004261t}) \][/tex]
Using the property of logarithms [tex]\( \ln(e^x) = x \)[/tex], we get:
[tex]\[ \ln(0.2) = -0.004261t \][/tex]
5. Solve for [tex]\( t \)[/tex]:
Rearrange the equation to solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{\ln(0.2)}{-0.004261} \][/tex]
6. Calculate [tex]\( \ln(0.2) \)[/tex] and then [tex]\( t \)[/tex]:
Compute [tex]\( t \)[/tex] using the given decay constant:
[tex]\[ t = \frac{\ln(0.2)}{-0.004261} \][/tex]
By solving this, we get:
[tex]\[ t \approx 377.71366168366586 \][/tex]
7. Round the final answer to one decimal place:
[tex]\[ t \approx 377.7 \][/tex]
Hence, it will take approximately 377.7 days for a 50 mg sample of the radioactive element to decay to 10 mg.
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. For clear and precise answers, choose IDNLearn.com. Thanks for stopping by, and come back soon for more valuable insights.