IDNLearn.com provides a comprehensive platform for finding accurate answers. Ask your questions and receive comprehensive, trustworthy responses from our dedicated team of experts.
Sagot :
To determine the time it will take for a 50 mg sample of a radioactive element to decay to 10 mg given the exponential decay model [tex]\( P(t) = P_0 e^{-0.004261t} \)[/tex], follow these steps:
1. Identify the given quantities:
- Initial amount ([tex]\( P_0 \)[/tex]): 50 mg
- Final amount ([tex]\( P(t) \)[/tex]): 10 mg
- Decay constant ([tex]\( k \)[/tex]): 0.004261
2. Set up the equation:
The formula for radioactive decay is:
[tex]\[ P(t) = P_0 e^{-kt} \][/tex]
Substituting the given values, we get:
[tex]\[ 10 = 50 e^{-0.004261t} \][/tex]
3. Isolate the exponential term:
Divide both sides of the equation by 50 to isolate the exponential expression:
[tex]\[ \frac{10}{50} = e^{-0.004261t} \][/tex]
Simplify the fraction:
[tex]\[ 0.2 = e^{-0.004261t} \][/tex]
4. Take the natural logarithm of both sides:
Applying the natural logarithm [tex]\( \ln \)[/tex] to both sides of the equation allows us to solve for [tex]\( t \)[/tex]:
[tex]\[ \ln(0.2) = \ln(e^{-0.004261t}) \][/tex]
Using the property of logarithms [tex]\( \ln(e^x) = x \)[/tex], we get:
[tex]\[ \ln(0.2) = -0.004261t \][/tex]
5. Solve for [tex]\( t \)[/tex]:
Rearrange the equation to solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{\ln(0.2)}{-0.004261} \][/tex]
6. Calculate [tex]\( \ln(0.2) \)[/tex] and then [tex]\( t \)[/tex]:
Compute [tex]\( t \)[/tex] using the given decay constant:
[tex]\[ t = \frac{\ln(0.2)}{-0.004261} \][/tex]
By solving this, we get:
[tex]\[ t \approx 377.71366168366586 \][/tex]
7. Round the final answer to one decimal place:
[tex]\[ t \approx 377.7 \][/tex]
Hence, it will take approximately 377.7 days for a 50 mg sample of the radioactive element to decay to 10 mg.
1. Identify the given quantities:
- Initial amount ([tex]\( P_0 \)[/tex]): 50 mg
- Final amount ([tex]\( P(t) \)[/tex]): 10 mg
- Decay constant ([tex]\( k \)[/tex]): 0.004261
2. Set up the equation:
The formula for radioactive decay is:
[tex]\[ P(t) = P_0 e^{-kt} \][/tex]
Substituting the given values, we get:
[tex]\[ 10 = 50 e^{-0.004261t} \][/tex]
3. Isolate the exponential term:
Divide both sides of the equation by 50 to isolate the exponential expression:
[tex]\[ \frac{10}{50} = e^{-0.004261t} \][/tex]
Simplify the fraction:
[tex]\[ 0.2 = e^{-0.004261t} \][/tex]
4. Take the natural logarithm of both sides:
Applying the natural logarithm [tex]\( \ln \)[/tex] to both sides of the equation allows us to solve for [tex]\( t \)[/tex]:
[tex]\[ \ln(0.2) = \ln(e^{-0.004261t}) \][/tex]
Using the property of logarithms [tex]\( \ln(e^x) = x \)[/tex], we get:
[tex]\[ \ln(0.2) = -0.004261t \][/tex]
5. Solve for [tex]\( t \)[/tex]:
Rearrange the equation to solve for [tex]\( t \)[/tex]:
[tex]\[ t = \frac{\ln(0.2)}{-0.004261} \][/tex]
6. Calculate [tex]\( \ln(0.2) \)[/tex] and then [tex]\( t \)[/tex]:
Compute [tex]\( t \)[/tex] using the given decay constant:
[tex]\[ t = \frac{\ln(0.2)}{-0.004261} \][/tex]
By solving this, we get:
[tex]\[ t \approx 377.71366168366586 \][/tex]
7. Round the final answer to one decimal place:
[tex]\[ t \approx 377.7 \][/tex]
Hence, it will take approximately 377.7 days for a 50 mg sample of the radioactive element to decay to 10 mg.
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Thanks for visiting IDNLearn.com. We’re dedicated to providing clear answers, so visit us again for more helpful information.