Connect with knowledgeable experts and enthusiasts on IDNLearn.com. Our community provides accurate and timely answers to help you understand and solve any issue.
Sagot :
To solve the inequality [tex]\( |2x + 1| > -x^2 + 4 \)[/tex], we need to carefully analyze and break down the components of the inequality.
### Step 1: Understand the Absolute Value Expression
The absolute value [tex]\( |2x + 1| \)[/tex] represents a piecewise function. We can define it as follows:
[tex]\[ |2x + 1| = \begin{cases} 2x + 1 & \text{if } 2x + 1 \geq 0 \\ -(2x + 1) & \text{if } 2x + 1 < 0 \end{cases} \][/tex]
Solving [tex]\( 2x + 1 \geq 0 \)[/tex] gives us [tex]\( x \geq -\frac{1}{2} \)[/tex]. Therefore:
[tex]\[ |2x + 1| = \begin{cases} 2x + 1 & \text{if } x \geq -\frac{1}{2} \\ -2x - 1 & \text{if } x < -\frac{1}{2} \end{cases} \][/tex]
### Step 2: Set up the Inequalities
Now we solve the inequality [tex]\( |2x + 1| > -x^2 + 4 \)[/tex] for each case.
#### Case 1: When [tex]\( x \geq -\frac{1}{2} \)[/tex]
Here, [tex]\( |2x + 1| = 2x + 1 \)[/tex]. The inequality becomes:
[tex]\[ 2x + 1 > -x^2 + 4 \][/tex]
Rearrange to standard form:
[tex]\[ x^2 + 2x + 1 > 0 \][/tex]
Factorize:
[tex]\[ (x + 1)^2 > 0 \][/tex]
The quadratic [tex]\( (x + 1)^2 \)[/tex] is always non-negative, and greater than 0 for all [tex]\( x \neq -1 \)[/tex]. Thus:
[tex]\[ x \in (-\infty, -1) \cup (-1, \infty) \][/tex]
However, since we are focusing on [tex]\( x \geq -\frac{1}{2} \)[/tex] in this case, this solution simplifies to:
[tex]\[ x \in [-\frac{1}{2}, -1) \cup (-1, \infty) \][/tex]
#### Case 2: When [tex]\( x < -\frac{1}{2} \)[/tex]
Here, [tex]\( |2x + 1| = -2x - 1 \)[/tex]. The inequality becomes:
[tex]\[ -2x - 1 > -x^2 + 4 \][/tex]
Rearrange to standard form:
[tex]\[ x^2 - 2x - 5 > 0 \][/tex]
Solve the quadratic inequality by finding the roots:
[tex]\[ x^2 - 2x - 5 = 0 \][/tex]
Using the quadratic formula:
[tex]\[ x = \frac{2 \pm \sqrt{4 + 20}}{2} = 1 \pm \sqrt{6} \][/tex]
So the roots are [tex]\( x = 1 + \sqrt{6} \)[/tex] and [tex]\( x = 1 - \sqrt{6} \)[/tex]. For [tex]\( x < -\frac{1}{2} \)[/tex], we want the intervals where the quadratic is positive. The quadratic opens upwards, so:
[tex]\[ x \in (-\infty, 1 - \sqrt{6}) \cup (1 + \sqrt{6}, \infty) \][/tex]
Restricting to [tex]\( x < -\frac{1}{2} \)[/tex]:
[tex]\[ x \in (-\infty, 1 - \sqrt{6}) \][/tex]
### Step 3: Combine the Solution Intervals
From Case 1, we have:
[tex]\[ x \in [-\frac{1}{2}, -1) \cup (-1, \infty) \][/tex]
From Case 2, we have:
[tex]\[ x \in (-\infty, 1 - \sqrt{6}) \][/tex]
Combining and simplifying these intervals, we get the final solution as:
[tex]\[ x \in (-\infty, 1 - \sqrt{6}) \cup (1, \infty) \][/tex]
### Step 1: Understand the Absolute Value Expression
The absolute value [tex]\( |2x + 1| \)[/tex] represents a piecewise function. We can define it as follows:
[tex]\[ |2x + 1| = \begin{cases} 2x + 1 & \text{if } 2x + 1 \geq 0 \\ -(2x + 1) & \text{if } 2x + 1 < 0 \end{cases} \][/tex]
Solving [tex]\( 2x + 1 \geq 0 \)[/tex] gives us [tex]\( x \geq -\frac{1}{2} \)[/tex]. Therefore:
[tex]\[ |2x + 1| = \begin{cases} 2x + 1 & \text{if } x \geq -\frac{1}{2} \\ -2x - 1 & \text{if } x < -\frac{1}{2} \end{cases} \][/tex]
### Step 2: Set up the Inequalities
Now we solve the inequality [tex]\( |2x + 1| > -x^2 + 4 \)[/tex] for each case.
#### Case 1: When [tex]\( x \geq -\frac{1}{2} \)[/tex]
Here, [tex]\( |2x + 1| = 2x + 1 \)[/tex]. The inequality becomes:
[tex]\[ 2x + 1 > -x^2 + 4 \][/tex]
Rearrange to standard form:
[tex]\[ x^2 + 2x + 1 > 0 \][/tex]
Factorize:
[tex]\[ (x + 1)^2 > 0 \][/tex]
The quadratic [tex]\( (x + 1)^2 \)[/tex] is always non-negative, and greater than 0 for all [tex]\( x \neq -1 \)[/tex]. Thus:
[tex]\[ x \in (-\infty, -1) \cup (-1, \infty) \][/tex]
However, since we are focusing on [tex]\( x \geq -\frac{1}{2} \)[/tex] in this case, this solution simplifies to:
[tex]\[ x \in [-\frac{1}{2}, -1) \cup (-1, \infty) \][/tex]
#### Case 2: When [tex]\( x < -\frac{1}{2} \)[/tex]
Here, [tex]\( |2x + 1| = -2x - 1 \)[/tex]. The inequality becomes:
[tex]\[ -2x - 1 > -x^2 + 4 \][/tex]
Rearrange to standard form:
[tex]\[ x^2 - 2x - 5 > 0 \][/tex]
Solve the quadratic inequality by finding the roots:
[tex]\[ x^2 - 2x - 5 = 0 \][/tex]
Using the quadratic formula:
[tex]\[ x = \frac{2 \pm \sqrt{4 + 20}}{2} = 1 \pm \sqrt{6} \][/tex]
So the roots are [tex]\( x = 1 + \sqrt{6} \)[/tex] and [tex]\( x = 1 - \sqrt{6} \)[/tex]. For [tex]\( x < -\frac{1}{2} \)[/tex], we want the intervals where the quadratic is positive. The quadratic opens upwards, so:
[tex]\[ x \in (-\infty, 1 - \sqrt{6}) \cup (1 + \sqrt{6}, \infty) \][/tex]
Restricting to [tex]\( x < -\frac{1}{2} \)[/tex]:
[tex]\[ x \in (-\infty, 1 - \sqrt{6}) \][/tex]
### Step 3: Combine the Solution Intervals
From Case 1, we have:
[tex]\[ x \in [-\frac{1}{2}, -1) \cup (-1, \infty) \][/tex]
From Case 2, we have:
[tex]\[ x \in (-\infty, 1 - \sqrt{6}) \][/tex]
Combining and simplifying these intervals, we get the final solution as:
[tex]\[ x \in (-\infty, 1 - \sqrt{6}) \cup (1, \infty) \][/tex]
Thank you for using this platform to share and learn. Don't hesitate to keep asking and answering. We value every contribution you make. Discover the answers you need at IDNLearn.com. Thanks for visiting, and come back soon for more valuable insights.