IDNLearn.com offers a collaborative platform for sharing and gaining knowledge. Join our interactive community and access reliable, detailed answers from experienced professionals across a variety of topics.
Sagot :
To determine the number of pennies in the stack using Cramer's Rule, let [tex]\( p \)[/tex] be the number of pennies, [tex]\( n \)[/tex] the number of nickels, and [tex]\( d \)[/tex] the number of dimes. We form the following system of linear equations based on the given conditions:
1. The total number of coins:
[tex]\[ p + n + d = 24 \][/tex]
2. The total value of the coins (in dollars):
[tex]\[ 0.01p + 0.05n + 0.10d = 1.16 \][/tex]
3. The total height of the coins (in mm):
[tex]\[ 1.52p + 1.95n + 1.35d = 37.27 \][/tex]
These equations can be written in matrix form as:
[tex]\[ \begin{cases} p + n + d = 24 \\ 0.01p + 0.05n + 0.10d = 1.16 \\ 1.52p + 1.95n + 1.35d = 37.27 \end{cases} \][/tex]
This can be represented as:
[tex]\[ A \vec{x} = \vec{B} \][/tex]
where
[tex]\[ A = \begin{bmatrix} 1 & 1 & 1 \\ 0.01 & 0.05 & 0.10 \\ 1.52 & 1.95 & 1.35 \end{bmatrix}, \quad \vec{x} = \begin{bmatrix} p \\ n \\ d \end{bmatrix}, \quad \vec{B} = \begin{bmatrix} 24 \\ 1.16 \\ 37.27 \end{bmatrix} \][/tex]
To use Cramer's Rule, we first find the determinant of matrix [tex]\( A \)[/tex], denoted as [tex]\( \text{det}(A) \)[/tex]:
[tex]\[ \text{det}(A) = \begin{vmatrix} 1 & 1 & 1 \\ 0.01 & 0.05 & 0.10 \\ 1.52 & 1.95 & 1.35 \end{vmatrix} = -0.0455 \][/tex]
Next, to find the determinant for the matrix [tex]\( A_p \)[/tex] where the first column (corresponding to [tex]\( p \)[/tex]) is replaced by the constants from [tex]\( \vec{B} \)[/tex]:
[tex]\[ A_p = \begin{bmatrix} 24 & 1 & 1 \\ 1.16 & 0.05 & 0.10 \\ 37.27 & 1.95 & 1.35 \end{bmatrix} \][/tex]
We calculate the determinant of [tex]\( A_p \)[/tex]:
[tex]\[ \text{det}(A_p) = \begin{vmatrix} 24 & 1 & 1 \\ 1.16 & 0.05 & 0.10 \\ 37.27 & 1.95 & 1.35 \end{vmatrix} = -0.5005 \][/tex]
Using Cramer's Rule, the number of pennies [tex]\( p \)[/tex] is given by:
[tex]\[ p = \frac{\text{det}(A_p)}{\text{det}(A)} = \frac{-0.5005}{-0.0455} = 11 \][/tex]
Therefore, there are 11 pennies in the stack.
1. The total number of coins:
[tex]\[ p + n + d = 24 \][/tex]
2. The total value of the coins (in dollars):
[tex]\[ 0.01p + 0.05n + 0.10d = 1.16 \][/tex]
3. The total height of the coins (in mm):
[tex]\[ 1.52p + 1.95n + 1.35d = 37.27 \][/tex]
These equations can be written in matrix form as:
[tex]\[ \begin{cases} p + n + d = 24 \\ 0.01p + 0.05n + 0.10d = 1.16 \\ 1.52p + 1.95n + 1.35d = 37.27 \end{cases} \][/tex]
This can be represented as:
[tex]\[ A \vec{x} = \vec{B} \][/tex]
where
[tex]\[ A = \begin{bmatrix} 1 & 1 & 1 \\ 0.01 & 0.05 & 0.10 \\ 1.52 & 1.95 & 1.35 \end{bmatrix}, \quad \vec{x} = \begin{bmatrix} p \\ n \\ d \end{bmatrix}, \quad \vec{B} = \begin{bmatrix} 24 \\ 1.16 \\ 37.27 \end{bmatrix} \][/tex]
To use Cramer's Rule, we first find the determinant of matrix [tex]\( A \)[/tex], denoted as [tex]\( \text{det}(A) \)[/tex]:
[tex]\[ \text{det}(A) = \begin{vmatrix} 1 & 1 & 1 \\ 0.01 & 0.05 & 0.10 \\ 1.52 & 1.95 & 1.35 \end{vmatrix} = -0.0455 \][/tex]
Next, to find the determinant for the matrix [tex]\( A_p \)[/tex] where the first column (corresponding to [tex]\( p \)[/tex]) is replaced by the constants from [tex]\( \vec{B} \)[/tex]:
[tex]\[ A_p = \begin{bmatrix} 24 & 1 & 1 \\ 1.16 & 0.05 & 0.10 \\ 37.27 & 1.95 & 1.35 \end{bmatrix} \][/tex]
We calculate the determinant of [tex]\( A_p \)[/tex]:
[tex]\[ \text{det}(A_p) = \begin{vmatrix} 24 & 1 & 1 \\ 1.16 & 0.05 & 0.10 \\ 37.27 & 1.95 & 1.35 \end{vmatrix} = -0.5005 \][/tex]
Using Cramer's Rule, the number of pennies [tex]\( p \)[/tex] is given by:
[tex]\[ p = \frac{\text{det}(A_p)}{\text{det}(A)} = \frac{-0.5005}{-0.0455} = 11 \][/tex]
Therefore, there are 11 pennies in the stack.
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. IDNLearn.com is your reliable source for answers. We appreciate your visit and look forward to assisting you again soon.