Join the IDNLearn.com community and start exploring a world of knowledge today. Our experts are ready to provide in-depth answers and practical solutions to any questions you may have.
Sagot :
To approximate the given integral
[tex]\[ \int_1^5 \frac{6 \cos (4 x)}{x} \, dx \][/tex]
using the specified methods (a) the Trapezoidal Rule, (b) the Midpoint Rule, and (c) Simpson's Rule with [tex]\( n = 4 \)[/tex], we can follow these steps.
### (a) The Trapezoidal Rule
1. Divide the interval [tex]\([1, 5]\)[/tex] into [tex]\( n = 4 \)[/tex] subintervals. So, the width of each subinterval [tex]\( h \)[/tex] is given by:
[tex]\[ h = \frac{b - a}{n} = \frac{5 - 1}{4} = 1 \][/tex]
2. Determine the partition points [tex]\( x_i \)[/tex] for [tex]\( i = 0 \)[/tex] to [tex]\( n \)[/tex]:
[tex]\[ x_0 = 1, \quad x_1 = 2, \quad x_2 = 3, \quad x_3 = 4, \quad x_4 = 5 \][/tex]
3. Compute the value of the function at each partition point:
[tex]\[ f(x) = \frac{6 \cos (4 x)}{x} \][/tex]
4. Apply the Trapezoidal Rule formula:
[tex]\[ \int_1^5 \frac{6 \cos (4 x)}{x} \, dx \approx \frac{h}{2} \left[ f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right] \][/tex]
5. The approximate value using the Trapezoidal Rule to six decimal places is:
[tex]\[ -1.901363 \][/tex]
### (b) The Midpoint Rule
1. Divide the interval [tex]\([1, 5]\)[/tex] into [tex]\( n = 4 \)[/tex] subintervals, and the width of each subinterval [tex]\( h \)[/tex] remains:
[tex]\[ h = 1 \][/tex]
2. Determine the midpoint of each subinterval:
[tex]\[ x_{0.5} = 1.5, \quad x_{1.5} = 2.5, \quad x_{2.5} = 3.5, \quad x_{3.5} = 4.5 \][/tex]
3. Compute the value of the function at each midpoint:
[tex]\[ f(x) = \frac{6 \cos (4 x)}{x} \][/tex]
4. Apply the Midpoint Rule formula:
[tex]\[ \int_1^5 \frac{6 \cos (4 x)}{x} \, dx \approx h \sum_{i=1}^{n} f\left( x_{i - 0.5} \right) \][/tex]
5. The approximate value using the Midpoint Rule to six decimal places is:
[tex]\[ 2.941738 \][/tex]
### (c) Simpson's Rule
1. Divide the interval [tex]\([1, 5]\)[/tex] into [tex]\( n = 4 \)[/tex] subintervals of equal width [tex]\( h \)[/tex]:
[tex]\[ h = 1 \][/tex]
2. Compute the value of the function at the partition points and midpoints for alternating coefficients:
[tex]\[ f(x) = \frac{6 \cos (4 x)}{x} \][/tex]
3. Apply Simpson's Rule formula:
[tex]\[ \int_1^5 \frac{6 \cos (4 x)}{x} \, dx \approx \frac{h}{3} \left[ f(x_0) + 4 \sum_{i=1, 3, 5, \cdots} f(x_i) + 2 \sum_{i=2, 4, 6, \cdots (n-2)} f(x_i) + f(x_n) \right] \][/tex]
4. The approximate value using Simpson's Rule to six decimal places is:
[tex]\[ 1.327371 \][/tex]
### Summary of results:
- Trapezoidal Rule: [tex]\(-1.901363\)[/tex]
- Midpoint Rule: [tex]\(2.941738\)[/tex]
- Simpson's Rule: [tex]\(1.327371\)[/tex]
[tex]\[ \int_1^5 \frac{6 \cos (4 x)}{x} \, dx \][/tex]
using the specified methods (a) the Trapezoidal Rule, (b) the Midpoint Rule, and (c) Simpson's Rule with [tex]\( n = 4 \)[/tex], we can follow these steps.
### (a) The Trapezoidal Rule
1. Divide the interval [tex]\([1, 5]\)[/tex] into [tex]\( n = 4 \)[/tex] subintervals. So, the width of each subinterval [tex]\( h \)[/tex] is given by:
[tex]\[ h = \frac{b - a}{n} = \frac{5 - 1}{4} = 1 \][/tex]
2. Determine the partition points [tex]\( x_i \)[/tex] for [tex]\( i = 0 \)[/tex] to [tex]\( n \)[/tex]:
[tex]\[ x_0 = 1, \quad x_1 = 2, \quad x_2 = 3, \quad x_3 = 4, \quad x_4 = 5 \][/tex]
3. Compute the value of the function at each partition point:
[tex]\[ f(x) = \frac{6 \cos (4 x)}{x} \][/tex]
4. Apply the Trapezoidal Rule formula:
[tex]\[ \int_1^5 \frac{6 \cos (4 x)}{x} \, dx \approx \frac{h}{2} \left[ f(x_0) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right] \][/tex]
5. The approximate value using the Trapezoidal Rule to six decimal places is:
[tex]\[ -1.901363 \][/tex]
### (b) The Midpoint Rule
1. Divide the interval [tex]\([1, 5]\)[/tex] into [tex]\( n = 4 \)[/tex] subintervals, and the width of each subinterval [tex]\( h \)[/tex] remains:
[tex]\[ h = 1 \][/tex]
2. Determine the midpoint of each subinterval:
[tex]\[ x_{0.5} = 1.5, \quad x_{1.5} = 2.5, \quad x_{2.5} = 3.5, \quad x_{3.5} = 4.5 \][/tex]
3. Compute the value of the function at each midpoint:
[tex]\[ f(x) = \frac{6 \cos (4 x)}{x} \][/tex]
4. Apply the Midpoint Rule formula:
[tex]\[ \int_1^5 \frac{6 \cos (4 x)}{x} \, dx \approx h \sum_{i=1}^{n} f\left( x_{i - 0.5} \right) \][/tex]
5. The approximate value using the Midpoint Rule to six decimal places is:
[tex]\[ 2.941738 \][/tex]
### (c) Simpson's Rule
1. Divide the interval [tex]\([1, 5]\)[/tex] into [tex]\( n = 4 \)[/tex] subintervals of equal width [tex]\( h \)[/tex]:
[tex]\[ h = 1 \][/tex]
2. Compute the value of the function at the partition points and midpoints for alternating coefficients:
[tex]\[ f(x) = \frac{6 \cos (4 x)}{x} \][/tex]
3. Apply Simpson's Rule formula:
[tex]\[ \int_1^5 \frac{6 \cos (4 x)}{x} \, dx \approx \frac{h}{3} \left[ f(x_0) + 4 \sum_{i=1, 3, 5, \cdots} f(x_i) + 2 \sum_{i=2, 4, 6, \cdots (n-2)} f(x_i) + f(x_n) \right] \][/tex]
4. The approximate value using Simpson's Rule to six decimal places is:
[tex]\[ 1.327371 \][/tex]
### Summary of results:
- Trapezoidal Rule: [tex]\(-1.901363\)[/tex]
- Midpoint Rule: [tex]\(2.941738\)[/tex]
- Simpson's Rule: [tex]\(1.327371\)[/tex]
We appreciate your contributions to this forum. Don't forget to check back for the latest answers. Keep asking, answering, and sharing useful information. IDNLearn.com has the solutions to your questions. Thanks for stopping by, and see you next time for more reliable information.