IDNLearn.com: Your go-to resource for finding precise and accurate answers. Discover the information you need from our experienced professionals who provide accurate and reliable answers to all your questions.
Sagot :
Sure! Let's break down the analysis of the function [tex]\( f(x) = \log_2(x) \)[/tex] according to the points listed:
1. x-intercept of [tex]\( f(x) \)[/tex]:
- The [tex]\( x \)[/tex]-intercept is the point where the function [tex]\( f(x) \)[/tex] crosses the [tex]\( x \)[/tex]-axis. This occurs when [tex]\( f(x) = 0 \)[/tex].
- Setting [tex]\( f(x) \)[/tex] to zero: [tex]\( \log_2(x) = 0 \)[/tex].
- Solving for [tex]\( x \)[/tex]: [tex]\( x = 2^0 = 1 \)[/tex].
- Therefore, the [tex]\( x \)[/tex]-intercept of [tex]\( f(x) = \log_2(x) \)[/tex] is at [tex]\( x = 1 \)[/tex].
2. Vertical asymptote of [tex]\( f(x) \)[/tex]:
- A vertical asymptote occurs where the function approaches infinity as [tex]\( x \)[/tex] approaches a certain value.
- For [tex]\( \log_2(x) \)[/tex], the function is not defined for [tex]\( x \leq 0 \)[/tex], and as [tex]\( x \)[/tex] approaches 0 from the positive side, [tex]\( \log_2(x) \)[/tex] tends to -∞.
- Therefore, the vertical asymptote of [tex]\( f(x) = \log_2(x) \)[/tex] is at [tex]\( x = 0 \)[/tex].
3. Intersection of [tex]\( f(x) \)[/tex] and the line [tex]\( y = 1 \)[/tex]:
- To find where the function [tex]\( f(x) \)[/tex] intersects the line [tex]\( y = 1 \)[/tex], set [tex]\( f(x) \)[/tex] equal to 1.
- Setting [tex]\( \log_2(x) = 1 \)[/tex].
- Solving for [tex]\( x \)[/tex]: [tex]\( x = 2^1 = 2 \)[/tex].
- Therefore, the intersection of [tex]\( f(x) = \log_2(x) \)[/tex] and the line [tex]\( y = 1 \)[/tex] is at [tex]\( x = 2 \)[/tex].
Based on these points, Otto should conclude the following about the function [tex]\( f(x) = \log_2(x) \)[/tex]:
- The [tex]\( x \)[/tex]-intercept is at [tex]\( x = 1 \)[/tex].
- There is a vertical asymptote at [tex]\( x = 0 \)[/tex].
- The function intersects the line [tex]\( y = 1 \)[/tex] at [tex]\( x = 2 \)[/tex].
Thus, the correct answer Otto should record is:
[tex]\[ (1, 0, 2) \][/tex]
1. x-intercept of [tex]\( f(x) \)[/tex]:
- The [tex]\( x \)[/tex]-intercept is the point where the function [tex]\( f(x) \)[/tex] crosses the [tex]\( x \)[/tex]-axis. This occurs when [tex]\( f(x) = 0 \)[/tex].
- Setting [tex]\( f(x) \)[/tex] to zero: [tex]\( \log_2(x) = 0 \)[/tex].
- Solving for [tex]\( x \)[/tex]: [tex]\( x = 2^0 = 1 \)[/tex].
- Therefore, the [tex]\( x \)[/tex]-intercept of [tex]\( f(x) = \log_2(x) \)[/tex] is at [tex]\( x = 1 \)[/tex].
2. Vertical asymptote of [tex]\( f(x) \)[/tex]:
- A vertical asymptote occurs where the function approaches infinity as [tex]\( x \)[/tex] approaches a certain value.
- For [tex]\( \log_2(x) \)[/tex], the function is not defined for [tex]\( x \leq 0 \)[/tex], and as [tex]\( x \)[/tex] approaches 0 from the positive side, [tex]\( \log_2(x) \)[/tex] tends to -∞.
- Therefore, the vertical asymptote of [tex]\( f(x) = \log_2(x) \)[/tex] is at [tex]\( x = 0 \)[/tex].
3. Intersection of [tex]\( f(x) \)[/tex] and the line [tex]\( y = 1 \)[/tex]:
- To find where the function [tex]\( f(x) \)[/tex] intersects the line [tex]\( y = 1 \)[/tex], set [tex]\( f(x) \)[/tex] equal to 1.
- Setting [tex]\( \log_2(x) = 1 \)[/tex].
- Solving for [tex]\( x \)[/tex]: [tex]\( x = 2^1 = 2 \)[/tex].
- Therefore, the intersection of [tex]\( f(x) = \log_2(x) \)[/tex] and the line [tex]\( y = 1 \)[/tex] is at [tex]\( x = 2 \)[/tex].
Based on these points, Otto should conclude the following about the function [tex]\( f(x) = \log_2(x) \)[/tex]:
- The [tex]\( x \)[/tex]-intercept is at [tex]\( x = 1 \)[/tex].
- There is a vertical asymptote at [tex]\( x = 0 \)[/tex].
- The function intersects the line [tex]\( y = 1 \)[/tex] at [tex]\( x = 2 \)[/tex].
Thus, the correct answer Otto should record is:
[tex]\[ (1, 0, 2) \][/tex]
Thank you for contributing to our discussion. Don't forget to check back for new answers. Keep asking, answering, and sharing useful information. Your questions deserve precise answers. Thank you for visiting IDNLearn.com, and see you again soon for more helpful information.