Get expert advice and insights on any topic with IDNLearn.com. Ask any question and receive timely, accurate responses from our dedicated community of experts.
Sagot :
### Question 2.2
Given the system of linear equations:
[tex]\[ 2x + 3y = 4 \tag{1} \][/tex]
[tex]\[ 4x - 2y = 12 \tag{2} \][/tex]
We can solve using Cramer's Rule.
First, write down the coefficients from the equations:
[tex]\[ \begin{aligned} & a_1 = 2, \quad b_1 = 3, \quad c_1 = 4 \\ & a_2 = 4, \quad b_2 = -2, \quad c_2 = 12 \\ \end{aligned} \][/tex]
Cramer's Rule involves the use of determinants.
Form the determinant [tex]\( D \)[/tex] (the determinant of the coefficient matrix):
[tex]\[ D = \begin{vmatrix} 2 & 3 \\ 4 & -2 \end{vmatrix} = 2(-2) - 4(3) = -4 - 12 = -16 \][/tex]
Now, form the determinant [tex]\( D_x \)[/tex] by replacing the [tex]\( x \)[/tex]-coefficients with the constants:
[tex]\[ D_x = \begin{vmatrix} 4 & 3 \\ 12 & -2 \end{vmatrix} = 4(-2) - 12(3) = -8 - 36 = -44 \][/tex]
Form the determinant [tex]\( D_y \)[/tex] by replacing the [tex]\( y \)[/tex]-coefficients with the constants:
[tex]\[ D_y = \begin{vmatrix} 2 & 4 \\ 4 & 12 \end{vmatrix} = 2(12) - 4(4) = 24 - 16 = 8 \][/tex]
According to Cramer's Rule, solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x = \frac{D_x}{D} = \frac{-44}{-16} = 2.75 \][/tex]
[tex]\[ y = \frac{D_y}{D} = \frac{8}{-16} = -0.5 \][/tex]
So, the values are:
[tex]\[ \boxed{x = 2.75, \quad y = -0.5} \][/tex]
### Question 2.3
Determine the value of expanding the determinant along the first column for the matrix:
[tex]\[ \left|\begin{array}{ccc} 2 & 3 & 4 \\ 5 & -1 & -3 \\ -4 & -2 & -5 \end{array}\right| \][/tex]
Expand along the first column:
[tex]\[ \text{Det} = 2 \left( \begin{vmatrix} -1 & -3 \\ -2 & -5 \end{vmatrix} \right) - 5 \left( \begin{vmatrix} 3 & 4 \\ -2 & -5 \end{vmatrix} \right) + (-4) \left( \begin{vmatrix} 3 & 4 \\ -1 & -3 \end{vmatrix} \right) \][/tex]
Calculate each of the smaller 2x2 determinants:
[tex]\[ \begin{vmatrix} -1 & -3 \\ -2 & -5 \end{vmatrix} = (-1)(-5) - (-3)(-2) = 5 - 6 = -1 \][/tex]
[tex]\[ \begin{vmatrix} 3 & 4 \\ -2 & -5 \end{vmatrix} = (3)(-5) - (4)(-2) = -15 + 8 = -7 \][/tex]
[tex]\[ \begin{vmatrix} 3 & 4 \\ -1 & -3 \end{vmatrix} = (3)(-3) - (4)(-1) = -9 + 4 = -5 \][/tex]
Plug these values back into the determinant expansion:
[tex]\[ \text{Det} = 2(-1) - 5(-7) - 4(-5) \][/tex]
[tex]\[ \text{Det} = -2 + 35 + 20 \][/tex]
[tex]\[ \text{Det} = 53 \][/tex]
So, the value of the determinant is:
[tex]\[ \boxed{53} \][/tex]
### Question 3.1
Solve for [tex]\( \alpha \)[/tex] in the equation:
[tex]\[ 2 \sin \alpha \cdot \tan \alpha - \tan \alpha + 2 \sin \alpha = 1 \][/tex]
Rewrite the equation:
[tex]\[ 2 \sin \alpha \cdot \frac{\sin \alpha}{\cos \alpha} - \frac{\sin \alpha}{\cos \alpha} + 2 \sin \alpha = 1 \][/tex]
Simplify this:
[tex]\[ 2 \frac{\sin^2 \alpha}{\cos \alpha} - \frac{\sin \alpha}{\cos \alpha} + 2 \sin \alpha = 1 \][/tex]
Combine like terms:
[tex]\[ \frac{2 \sin^2 \alpha - \sin \alpha}{\cos \alpha} + 2 \sin \alpha = 1 \][/tex]
Let [tex]\( u = \sin \alpha \)[/tex]:
[tex]\[ \frac{2u^2 - u}{\cos \alpha} + 2u = 1 \][/tex]
Using the unit circle properties and solving, the values for [tex]\( \alpha \)[/tex] within the range [tex]\(-90^{\circ} \leq \alpha \leq 90^{\circ}\)[/tex] are:
[tex]\[ \boxed{\alpha = -\frac{\pi}{4}, \quad \frac{\pi}{6}, \quad \frac{5\pi}{6}} \][/tex]
### Question 3.2
Simplify the expression:
[tex]\[ \frac{\cos 2p}{\cos p - \sin p} \][/tex]
Using the double-angle formula for cosine:
[tex]\[ \cos 2p = \cos^2 p - \sin^2 p \][/tex]
Rewrite the expression:
[tex]\[ \frac{\cos^2 p - \sin^2 p}{\cos p - \sin p} \][/tex]
Factor the numerator using the difference of squares:
[tex]\[ = \frac{(\cos p + \sin p)(\cos p - \sin p)}{\cos p - \sin p} \][/tex]
[tex]\[ = \cos p + \sin p \][/tex]
Realize that we have:
[tex]\[ \frac{\cos 2p}{\cos p - \sin p} = \frac{(\cos p + \sin p)(\cos p - \sin p)}{\cos p - \sin p} = \cos p + \sin p \][/tex]
Thus, the simplified expression is:
[tex]\[ \boxed{\sqrt{2}\cos(2p)/(2\cos(p + \pi/4))} \][/tex]
Given the system of linear equations:
[tex]\[ 2x + 3y = 4 \tag{1} \][/tex]
[tex]\[ 4x - 2y = 12 \tag{2} \][/tex]
We can solve using Cramer's Rule.
First, write down the coefficients from the equations:
[tex]\[ \begin{aligned} & a_1 = 2, \quad b_1 = 3, \quad c_1 = 4 \\ & a_2 = 4, \quad b_2 = -2, \quad c_2 = 12 \\ \end{aligned} \][/tex]
Cramer's Rule involves the use of determinants.
Form the determinant [tex]\( D \)[/tex] (the determinant of the coefficient matrix):
[tex]\[ D = \begin{vmatrix} 2 & 3 \\ 4 & -2 \end{vmatrix} = 2(-2) - 4(3) = -4 - 12 = -16 \][/tex]
Now, form the determinant [tex]\( D_x \)[/tex] by replacing the [tex]\( x \)[/tex]-coefficients with the constants:
[tex]\[ D_x = \begin{vmatrix} 4 & 3 \\ 12 & -2 \end{vmatrix} = 4(-2) - 12(3) = -8 - 36 = -44 \][/tex]
Form the determinant [tex]\( D_y \)[/tex] by replacing the [tex]\( y \)[/tex]-coefficients with the constants:
[tex]\[ D_y = \begin{vmatrix} 2 & 4 \\ 4 & 12 \end{vmatrix} = 2(12) - 4(4) = 24 - 16 = 8 \][/tex]
According to Cramer's Rule, solve for [tex]\( x \)[/tex] and [tex]\( y \)[/tex]:
[tex]\[ x = \frac{D_x}{D} = \frac{-44}{-16} = 2.75 \][/tex]
[tex]\[ y = \frac{D_y}{D} = \frac{8}{-16} = -0.5 \][/tex]
So, the values are:
[tex]\[ \boxed{x = 2.75, \quad y = -0.5} \][/tex]
### Question 2.3
Determine the value of expanding the determinant along the first column for the matrix:
[tex]\[ \left|\begin{array}{ccc} 2 & 3 & 4 \\ 5 & -1 & -3 \\ -4 & -2 & -5 \end{array}\right| \][/tex]
Expand along the first column:
[tex]\[ \text{Det} = 2 \left( \begin{vmatrix} -1 & -3 \\ -2 & -5 \end{vmatrix} \right) - 5 \left( \begin{vmatrix} 3 & 4 \\ -2 & -5 \end{vmatrix} \right) + (-4) \left( \begin{vmatrix} 3 & 4 \\ -1 & -3 \end{vmatrix} \right) \][/tex]
Calculate each of the smaller 2x2 determinants:
[tex]\[ \begin{vmatrix} -1 & -3 \\ -2 & -5 \end{vmatrix} = (-1)(-5) - (-3)(-2) = 5 - 6 = -1 \][/tex]
[tex]\[ \begin{vmatrix} 3 & 4 \\ -2 & -5 \end{vmatrix} = (3)(-5) - (4)(-2) = -15 + 8 = -7 \][/tex]
[tex]\[ \begin{vmatrix} 3 & 4 \\ -1 & -3 \end{vmatrix} = (3)(-3) - (4)(-1) = -9 + 4 = -5 \][/tex]
Plug these values back into the determinant expansion:
[tex]\[ \text{Det} = 2(-1) - 5(-7) - 4(-5) \][/tex]
[tex]\[ \text{Det} = -2 + 35 + 20 \][/tex]
[tex]\[ \text{Det} = 53 \][/tex]
So, the value of the determinant is:
[tex]\[ \boxed{53} \][/tex]
### Question 3.1
Solve for [tex]\( \alpha \)[/tex] in the equation:
[tex]\[ 2 \sin \alpha \cdot \tan \alpha - \tan \alpha + 2 \sin \alpha = 1 \][/tex]
Rewrite the equation:
[tex]\[ 2 \sin \alpha \cdot \frac{\sin \alpha}{\cos \alpha} - \frac{\sin \alpha}{\cos \alpha} + 2 \sin \alpha = 1 \][/tex]
Simplify this:
[tex]\[ 2 \frac{\sin^2 \alpha}{\cos \alpha} - \frac{\sin \alpha}{\cos \alpha} + 2 \sin \alpha = 1 \][/tex]
Combine like terms:
[tex]\[ \frac{2 \sin^2 \alpha - \sin \alpha}{\cos \alpha} + 2 \sin \alpha = 1 \][/tex]
Let [tex]\( u = \sin \alpha \)[/tex]:
[tex]\[ \frac{2u^2 - u}{\cos \alpha} + 2u = 1 \][/tex]
Using the unit circle properties and solving, the values for [tex]\( \alpha \)[/tex] within the range [tex]\(-90^{\circ} \leq \alpha \leq 90^{\circ}\)[/tex] are:
[tex]\[ \boxed{\alpha = -\frac{\pi}{4}, \quad \frac{\pi}{6}, \quad \frac{5\pi}{6}} \][/tex]
### Question 3.2
Simplify the expression:
[tex]\[ \frac{\cos 2p}{\cos p - \sin p} \][/tex]
Using the double-angle formula for cosine:
[tex]\[ \cos 2p = \cos^2 p - \sin^2 p \][/tex]
Rewrite the expression:
[tex]\[ \frac{\cos^2 p - \sin^2 p}{\cos p - \sin p} \][/tex]
Factor the numerator using the difference of squares:
[tex]\[ = \frac{(\cos p + \sin p)(\cos p - \sin p)}{\cos p - \sin p} \][/tex]
[tex]\[ = \cos p + \sin p \][/tex]
Realize that we have:
[tex]\[ \frac{\cos 2p}{\cos p - \sin p} = \frac{(\cos p + \sin p)(\cos p - \sin p)}{\cos p - \sin p} = \cos p + \sin p \][/tex]
Thus, the simplified expression is:
[tex]\[ \boxed{\sqrt{2}\cos(2p)/(2\cos(p + \pi/4))} \][/tex]
We value your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Find clear and concise answers at IDNLearn.com. Thanks for stopping by, and come back for more dependable solutions.