Expand your horizons with the diverse and informative answers found on IDNLearn.com. Get comprehensive answers to all your questions from our network of experienced experts.
Sagot :
Sure, let's break this down step-by-step:
### 1. Simplification of [tex]\(\frac{(\sec x - \tan x)(\sec x + \tan x)}{\tan x}\)[/tex]
First, we use the identity:
[tex]\[ (\sec x - \tan x)(\sec x + \tan x) = \sec^2 x - \tan^2 x \][/tex]
We know from the trigonometric identity:
[tex]\[ \sec^2 x - \tan^2 x = 1 \][/tex]
Thus, the expression simplifies to:
[tex]\[ \frac{1}{\tan x} = \cot x \][/tex]
So, the simplified form of [tex]\(\frac{(\sec x - \tan x)(\sec x + \tan x)}{\tan x}\)[/tex] is [tex]\(\cot x\)[/tex].
### 2. Differentiating [tex]\( y = -x^3 \)[/tex] from first principles
To differentiate [tex]\( y = -x^3 \)[/tex] from first principles, we'll use the definition of the derivative:
[tex]\[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \][/tex]
Calculating [tex]\( f(x+h) \)[/tex]:
[tex]\[ f(x+h) = -(x+h)^3 = -x^3 - 3x^2h - 3xh^2 - h^3 \][/tex]
Thus,
[tex]\[ f'(x) = \lim_{h \to 0} \frac{[-x^3 - 3x^2h - 3xh^2 - h^3] - (-x^3)}{h} \][/tex]
[tex]\[ = \lim_{h \to 0} \frac{-3x^2h - 3xh^2 - h^3}{h} \][/tex]
[tex]\[ = \lim_{h \to 0} [-3x^2 - 3xh - h^2] \][/tex]
Taking the limit as [tex]\( h \to 0 \)[/tex], we get:
[tex]\[ f'(x) = -3x^2 \][/tex]
Hence, the derivative of [tex]\( y = -x^3 \)[/tex] is [tex]\( \frac{dy}{dx} = -3x^2 \)[/tex].
### 3. Finding the turning points of [tex]\( y = x^3 - 12x^2 + 36x \)[/tex]
First, we find the first derivative of the function:
[tex]\[ y = x^3 - 12x^2 + 36x \][/tex]
Differentiating [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{dy}{dx} = 3x^2 - 24x + 36 \][/tex]
To find the turning points, we set the first derivative equal to zero:
[tex]\[ 3x^2 - 24x + 36 = 0 \][/tex]
Solving the quadratic equation:
[tex]\[ x^2 - 8x + 12 = 0 \][/tex]
[tex]\[ (x - 2)(x - 6) = 0 \][/tex]
[tex]\[ x = 2 \quad \text{or} \quad x = 6 \][/tex]
We now find the coordinates of the turning points by substituting these [tex]\( x \)[/tex]-values back into the original function [tex]\( y \)[/tex]:
[tex]\[ \text{At } x = 2: \quad y = 2^3 - 12(2)^2 + 36(2) = 8 - 48 + 72 = 32 \][/tex]
[tex]\[ \text{At } x = 6: \quad y = 6^3 - 12(6)^2 + 36(6) = 216 - 432 + 216 = 0 \][/tex]
Thus, the turning points are at [tex]\( (2, 32) \)[/tex] and [tex]\( (6, 0) \)[/tex].
### 4. Differentiating [tex]\( y = 5\sqrt{\ln x} \)[/tex] using the chain rule
Given:
[tex]\[ y = 5\sqrt{\ln x} = 5(\ln x)^{1/2} \][/tex]
Let [tex]\( u = \ln x \)[/tex], so [tex]\( y = 5u^{1/2} \)[/tex]:
[tex]\[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \][/tex]
First, find [tex]\( \frac{dy}{du} \)[/tex]:
[tex]\[ \frac{dy}{du} = 5 \cdot \frac{1}{2}u^{-1/2} = \frac{5}{2}u^{-1/2} = \frac{5}{2\sqrt{u}} \][/tex]
Next, find [tex]\( \frac{du}{dx} \)[/tex]:
[tex]\[ \frac{du}{dx} = \frac{d}{dx} (\ln x) = \frac{1}{x} \][/tex]
Combining these gives us:
[tex]\[ \frac{dy}{dx} = \frac{5}{2\sqrt{u}} \cdot \frac{1}{x} = \frac{5}{2\sqrt{\ln x}} \cdot \frac{1}{x} = \frac{5}{2x\sqrt{\ln x}} \][/tex]
Hence, the derivative of [tex]\( y = 5\sqrt{\ln x} \)[/tex] is:
[tex]\[ \frac{dy}{dx} = \frac{5}{2x\sqrt{\ln x}} \][/tex]
### 1. Simplification of [tex]\(\frac{(\sec x - \tan x)(\sec x + \tan x)}{\tan x}\)[/tex]
First, we use the identity:
[tex]\[ (\sec x - \tan x)(\sec x + \tan x) = \sec^2 x - \tan^2 x \][/tex]
We know from the trigonometric identity:
[tex]\[ \sec^2 x - \tan^2 x = 1 \][/tex]
Thus, the expression simplifies to:
[tex]\[ \frac{1}{\tan x} = \cot x \][/tex]
So, the simplified form of [tex]\(\frac{(\sec x - \tan x)(\sec x + \tan x)}{\tan x}\)[/tex] is [tex]\(\cot x\)[/tex].
### 2. Differentiating [tex]\( y = -x^3 \)[/tex] from first principles
To differentiate [tex]\( y = -x^3 \)[/tex] from first principles, we'll use the definition of the derivative:
[tex]\[ f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \][/tex]
Calculating [tex]\( f(x+h) \)[/tex]:
[tex]\[ f(x+h) = -(x+h)^3 = -x^3 - 3x^2h - 3xh^2 - h^3 \][/tex]
Thus,
[tex]\[ f'(x) = \lim_{h \to 0} \frac{[-x^3 - 3x^2h - 3xh^2 - h^3] - (-x^3)}{h} \][/tex]
[tex]\[ = \lim_{h \to 0} \frac{-3x^2h - 3xh^2 - h^3}{h} \][/tex]
[tex]\[ = \lim_{h \to 0} [-3x^2 - 3xh - h^2] \][/tex]
Taking the limit as [tex]\( h \to 0 \)[/tex], we get:
[tex]\[ f'(x) = -3x^2 \][/tex]
Hence, the derivative of [tex]\( y = -x^3 \)[/tex] is [tex]\( \frac{dy}{dx} = -3x^2 \)[/tex].
### 3. Finding the turning points of [tex]\( y = x^3 - 12x^2 + 36x \)[/tex]
First, we find the first derivative of the function:
[tex]\[ y = x^3 - 12x^2 + 36x \][/tex]
Differentiating [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{dy}{dx} = 3x^2 - 24x + 36 \][/tex]
To find the turning points, we set the first derivative equal to zero:
[tex]\[ 3x^2 - 24x + 36 = 0 \][/tex]
Solving the quadratic equation:
[tex]\[ x^2 - 8x + 12 = 0 \][/tex]
[tex]\[ (x - 2)(x - 6) = 0 \][/tex]
[tex]\[ x = 2 \quad \text{or} \quad x = 6 \][/tex]
We now find the coordinates of the turning points by substituting these [tex]\( x \)[/tex]-values back into the original function [tex]\( y \)[/tex]:
[tex]\[ \text{At } x = 2: \quad y = 2^3 - 12(2)^2 + 36(2) = 8 - 48 + 72 = 32 \][/tex]
[tex]\[ \text{At } x = 6: \quad y = 6^3 - 12(6)^2 + 36(6) = 216 - 432 + 216 = 0 \][/tex]
Thus, the turning points are at [tex]\( (2, 32) \)[/tex] and [tex]\( (6, 0) \)[/tex].
### 4. Differentiating [tex]\( y = 5\sqrt{\ln x} \)[/tex] using the chain rule
Given:
[tex]\[ y = 5\sqrt{\ln x} = 5(\ln x)^{1/2} \][/tex]
Let [tex]\( u = \ln x \)[/tex], so [tex]\( y = 5u^{1/2} \)[/tex]:
[tex]\[ \frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} \][/tex]
First, find [tex]\( \frac{dy}{du} \)[/tex]:
[tex]\[ \frac{dy}{du} = 5 \cdot \frac{1}{2}u^{-1/2} = \frac{5}{2}u^{-1/2} = \frac{5}{2\sqrt{u}} \][/tex]
Next, find [tex]\( \frac{du}{dx} \)[/tex]:
[tex]\[ \frac{du}{dx} = \frac{d}{dx} (\ln x) = \frac{1}{x} \][/tex]
Combining these gives us:
[tex]\[ \frac{dy}{dx} = \frac{5}{2\sqrt{u}} \cdot \frac{1}{x} = \frac{5}{2\sqrt{\ln x}} \cdot \frac{1}{x} = \frac{5}{2x\sqrt{\ln x}} \][/tex]
Hence, the derivative of [tex]\( y = 5\sqrt{\ln x} \)[/tex] is:
[tex]\[ \frac{dy}{dx} = \frac{5}{2x\sqrt{\ln x}} \][/tex]
Thank you for joining our conversation. Don't hesitate to return anytime to find answers to your questions. Let's continue sharing knowledge and experiences! For trustworthy answers, visit IDNLearn.com. Thank you for your visit, and see you next time for more reliable solutions.