Find the best solutions to your problems with the help of IDNLearn.com's expert users. Whether it's a simple query or a complex problem, our experts have the answers you need.
Sagot :
To determine the general solution of the differential equation
[tex]\[ \frac{dy}{dx} - 3y = 3x^2 e^x, \][/tex]
we will follow these steps:
1. Identify the type of differential equation: The given equation is a linear first-order differential equation.
2. Rewrite the equation in standard form: The standard form for a first-order linear differential equation is:
[tex]\[ \frac{dy}{dx} + P(x)y = Q(x), \][/tex]
where [tex]\( P(x) \)[/tex] and [tex]\( Q(x) \)[/tex] are functions of [tex]\( x \)[/tex]. In our equation,
[tex]\[ P(x) = -3 \quad \text{and} \quad Q(x) = 3x^2 e^x. \][/tex]
[tex]\[ \frac{dy}{dx} + (-3)y = 3x^2 e^x. \][/tex]
3. Determine the integrating factor [tex]\( \mu(x) \)[/tex]: The integrating factor is given by:
[tex]\[ \mu(x) = e^{\int P(x) \, dx} = e^{\int -3 \, dx} = e^{-3x}. \][/tex]
4. Multiply the entire equation by the integrating factor to make the left side a derivative of a product of functions:
[tex]\[ e^{-3x} \frac{dy}{dx} - 3e^{-3x} y = 3x^2 e^{x} e^{-3x}. \][/tex]
Simplify:
[tex]\[ e^{-3x} \frac{dy}{dx} - 3e^{-3x} y = 3x^2 e^{-2x}. \][/tex]
Recognize that the left side can be written as the derivative of [tex]\( y e^{-3x} \)[/tex]:
[tex]\[ \frac{d}{dx} (y e^{-3x}) = 3x^2 e^{-2x}. \][/tex]
5. Integrate both sides:
[tex]\[ \int \frac{d}{dx} (y e^{-3x}) \, dx = \int 3x^2 e^{-2x} \, dx. \][/tex]
On the left side, the integral of the derivative is simply [tex]\( y e^{-3x} \)[/tex], so:
[tex]\[ y e^{-3x} = \int 3x^2 e^{-2x} \, dx. \][/tex]
6. Evaluate the integral on the right side using integration by parts, where we let [tex]\( u = x^2 \)[/tex] and [tex]\( dv = 3e^{-2x} dx \)[/tex]. After performing integration by parts, we get:
[tex]\[ \int 3x^2 e^{-2x} \, dx = \int x^2 \cdot 3e^{-2x} \, dx. \][/tex]
The right side of our differential equation integrates to:
[tex]\[ \int 3x^2 e^{-2x} \, dx = -\frac{3}{2}x^2 e^{-2x} -\frac{3}{2}x e^{-2x} - \frac{3}{4}e^{-2x}. \][/tex]
Thus,
[tex]\[ y e^{-3x} = -\frac{3}{2}x^2 e^{-2x} -\frac{3}{2}x e^{-2x} - \frac{3}{4}e^{-2x} + C, \][/tex]
where [tex]\( C \)[/tex] is the constant of integration.
7. Solve for [tex]\( y \)[/tex] by multiplying through by [tex]\( e^{3x} \)[/tex]:
[tex]\[ y = e^{3x} \left(-\frac{3}{2}x^2 e^{-2x} -\frac{3}{2}x e^{-2x} - \frac{3}{4}e^{-2x} + C \right), \][/tex]
[tex]\[ y = e^{x} \left(-\frac{3}{2}x^2 -\frac{3}{2}x - \frac{3}{4} + C e^{2x} \right). \][/tex]
Simplify to obtain the general solution:
[tex]\[ y(x) = \left( C_1 e^{2x} - \frac{3}{2}x^2 - \frac{3}{2}x - \frac{3}{4} \right) e^{x}, \][/tex]
where [tex]\( C_1 \)[/tex] is an arbitrary constant of integration.
Thus, the general solution to the differential equation is:
[tex]\[ y(x) = \left( C_1 e^{2x} - \frac{3}{2}x^2 - \frac{3}{2}x - \frac{3}{4} \right) e^{x}. \][/tex]
[tex]\[ \frac{dy}{dx} - 3y = 3x^2 e^x, \][/tex]
we will follow these steps:
1. Identify the type of differential equation: The given equation is a linear first-order differential equation.
2. Rewrite the equation in standard form: The standard form for a first-order linear differential equation is:
[tex]\[ \frac{dy}{dx} + P(x)y = Q(x), \][/tex]
where [tex]\( P(x) \)[/tex] and [tex]\( Q(x) \)[/tex] are functions of [tex]\( x \)[/tex]. In our equation,
[tex]\[ P(x) = -3 \quad \text{and} \quad Q(x) = 3x^2 e^x. \][/tex]
[tex]\[ \frac{dy}{dx} + (-3)y = 3x^2 e^x. \][/tex]
3. Determine the integrating factor [tex]\( \mu(x) \)[/tex]: The integrating factor is given by:
[tex]\[ \mu(x) = e^{\int P(x) \, dx} = e^{\int -3 \, dx} = e^{-3x}. \][/tex]
4. Multiply the entire equation by the integrating factor to make the left side a derivative of a product of functions:
[tex]\[ e^{-3x} \frac{dy}{dx} - 3e^{-3x} y = 3x^2 e^{x} e^{-3x}. \][/tex]
Simplify:
[tex]\[ e^{-3x} \frac{dy}{dx} - 3e^{-3x} y = 3x^2 e^{-2x}. \][/tex]
Recognize that the left side can be written as the derivative of [tex]\( y e^{-3x} \)[/tex]:
[tex]\[ \frac{d}{dx} (y e^{-3x}) = 3x^2 e^{-2x}. \][/tex]
5. Integrate both sides:
[tex]\[ \int \frac{d}{dx} (y e^{-3x}) \, dx = \int 3x^2 e^{-2x} \, dx. \][/tex]
On the left side, the integral of the derivative is simply [tex]\( y e^{-3x} \)[/tex], so:
[tex]\[ y e^{-3x} = \int 3x^2 e^{-2x} \, dx. \][/tex]
6. Evaluate the integral on the right side using integration by parts, where we let [tex]\( u = x^2 \)[/tex] and [tex]\( dv = 3e^{-2x} dx \)[/tex]. After performing integration by parts, we get:
[tex]\[ \int 3x^2 e^{-2x} \, dx = \int x^2 \cdot 3e^{-2x} \, dx. \][/tex]
The right side of our differential equation integrates to:
[tex]\[ \int 3x^2 e^{-2x} \, dx = -\frac{3}{2}x^2 e^{-2x} -\frac{3}{2}x e^{-2x} - \frac{3}{4}e^{-2x}. \][/tex]
Thus,
[tex]\[ y e^{-3x} = -\frac{3}{2}x^2 e^{-2x} -\frac{3}{2}x e^{-2x} - \frac{3}{4}e^{-2x} + C, \][/tex]
where [tex]\( C \)[/tex] is the constant of integration.
7. Solve for [tex]\( y \)[/tex] by multiplying through by [tex]\( e^{3x} \)[/tex]:
[tex]\[ y = e^{3x} \left(-\frac{3}{2}x^2 e^{-2x} -\frac{3}{2}x e^{-2x} - \frac{3}{4}e^{-2x} + C \right), \][/tex]
[tex]\[ y = e^{x} \left(-\frac{3}{2}x^2 -\frac{3}{2}x - \frac{3}{4} + C e^{2x} \right). \][/tex]
Simplify to obtain the general solution:
[tex]\[ y(x) = \left( C_1 e^{2x} - \frac{3}{2}x^2 - \frac{3}{2}x - \frac{3}{4} \right) e^{x}, \][/tex]
where [tex]\( C_1 \)[/tex] is an arbitrary constant of integration.
Thus, the general solution to the differential equation is:
[tex]\[ y(x) = \left( C_1 e^{2x} - \frac{3}{2}x^2 - \frac{3}{2}x - \frac{3}{4} \right) e^{x}. \][/tex]
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is committed to providing the best answers. Thank you for visiting, and see you next time for more solutions.