From simple queries to complex problems, IDNLearn.com provides reliable answers. Get step-by-step guidance for all your technical questions from our dedicated community members.
Sagot :
To find the values of [tex]\(\lambda\)[/tex] for which the matrix [tex]\(\lambda I - A\)[/tex] is singular, we need to follow these steps:
1. Given Matrix [tex]\(A\)[/tex] and Identity Matrix [tex]\(I\)[/tex]:
We start with the matrix [tex]\(A\)[/tex]:
[tex]\[ A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \\ \end{pmatrix} \][/tex]
The identity matrix [tex]\(I\)[/tex] of the same size (3x3) is:
[tex]\[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \][/tex]
2. Form the Matrix [tex]\(\lambda I - A\)[/tex]:
The matrix [tex]\(\lambda I - A\)[/tex] is calculated as follows:
[tex]\[ \lambda I - A = \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} - \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \\ \end{pmatrix} \][/tex]
Simplifying this, we get:
[tex]\[ \lambda I - A = \begin{pmatrix} \lambda - 1 & 0 & -2 \\ 0 & \lambda + 1 & 2 \\ -2 & 2 & \lambda \\ \end{pmatrix} \][/tex]
3. Determinant of [tex]\(\lambda I - A\)[/tex]:
To find the values of [tex]\(\lambda\)[/tex] that make this matrix singular, we need to set the determinant of [tex]\(\lambda I - A\)[/tex] to zero and solve for [tex]\(\lambda\)[/tex].
So, we compute the determinant:
[tex]\[ \det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & 0 & -2 \\ 0 & \lambda + 1 & 2 \\ -2 & 2 & \lambda \\ \end{vmatrix} \][/tex]
4. Calculate the Determinant:
We expand the determinant along the first row:
[tex]\[ \det(\lambda I - A) = (\lambda - 1) \begin{vmatrix} \lambda + 1 & 2 \\ 2 & \lambda \\ \end{vmatrix} - 0 \cdot \begin{vmatrix} 0 & -2 \\ -2 & \lambda \\ \end{vmatrix} - 2 \begin{vmatrix} 0 & \lambda + 1 \\ -2 & 2 \\ \end{vmatrix} \][/tex]
Further simplifying each term:
[tex]\[ (\lambda - 1) \left( (\lambda + 1)\lambda - (2 \cdot 2) \right) - 2 \left( 0 \cdot 2 - (-2) \cdot (\lambda + 1) \right) \][/tex]
[tex]\[ = (\lambda - 1)(\lambda^2 + \lambda - 4) + 4(\lambda + 1) \][/tex]
Expanding and combining like terms:
[tex]\[ (\lambda - 1)\lambda^2 + (\lambda - 1)\lambda - 4(\lambda - 1) + 4\lambda + 4 \][/tex]
[tex]\[ = \lambda^3 - \lambda^2 + \lambda^2 - \lambda - 4\lambda + 4 + 4\lambda + 4 \][/tex]
Simplifying, we have:
[tex]\[ \lambda^3 - 9\lambda \][/tex]
Hence, the determinant is:
[tex]\[ \det(\lambda I - A) = \lambda^3 - 9\lambda \][/tex]
5. Solve for [tex]\(\lambda\)[/tex]:
Set the determinant to zero:
[tex]\[ \lambda^3 - 9\lambda = 0 \][/tex]
Factorize the expression:
[tex]\[ \lambda (\lambda^2 - 9) = 0 \][/tex]
[tex]\[ \lambda (\lambda - 3)(\lambda + 3) = 0 \][/tex]
Solving for [tex]\(\lambda\)[/tex], we get:
[tex]\[ \lambda = 0, \, \lambda = 3, \, \lambda = -3 \][/tex]
Therefore, the values of [tex]\(\lambda\)[/tex] for which the matrix [tex]\(\lambda I - A\)[/tex] is singular are [tex]\(\boxed{-3, 0, \text{ and } 3}\)[/tex].
1. Given Matrix [tex]\(A\)[/tex] and Identity Matrix [tex]\(I\)[/tex]:
We start with the matrix [tex]\(A\)[/tex]:
[tex]\[ A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \\ \end{pmatrix} \][/tex]
The identity matrix [tex]\(I\)[/tex] of the same size (3x3) is:
[tex]\[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \][/tex]
2. Form the Matrix [tex]\(\lambda I - A\)[/tex]:
The matrix [tex]\(\lambda I - A\)[/tex] is calculated as follows:
[tex]\[ \lambda I - A = \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} - \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \\ \end{pmatrix} \][/tex]
Simplifying this, we get:
[tex]\[ \lambda I - A = \begin{pmatrix} \lambda - 1 & 0 & -2 \\ 0 & \lambda + 1 & 2 \\ -2 & 2 & \lambda \\ \end{pmatrix} \][/tex]
3. Determinant of [tex]\(\lambda I - A\)[/tex]:
To find the values of [tex]\(\lambda\)[/tex] that make this matrix singular, we need to set the determinant of [tex]\(\lambda I - A\)[/tex] to zero and solve for [tex]\(\lambda\)[/tex].
So, we compute the determinant:
[tex]\[ \det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & 0 & -2 \\ 0 & \lambda + 1 & 2 \\ -2 & 2 & \lambda \\ \end{vmatrix} \][/tex]
4. Calculate the Determinant:
We expand the determinant along the first row:
[tex]\[ \det(\lambda I - A) = (\lambda - 1) \begin{vmatrix} \lambda + 1 & 2 \\ 2 & \lambda \\ \end{vmatrix} - 0 \cdot \begin{vmatrix} 0 & -2 \\ -2 & \lambda \\ \end{vmatrix} - 2 \begin{vmatrix} 0 & \lambda + 1 \\ -2 & 2 \\ \end{vmatrix} \][/tex]
Further simplifying each term:
[tex]\[ (\lambda - 1) \left( (\lambda + 1)\lambda - (2 \cdot 2) \right) - 2 \left( 0 \cdot 2 - (-2) \cdot (\lambda + 1) \right) \][/tex]
[tex]\[ = (\lambda - 1)(\lambda^2 + \lambda - 4) + 4(\lambda + 1) \][/tex]
Expanding and combining like terms:
[tex]\[ (\lambda - 1)\lambda^2 + (\lambda - 1)\lambda - 4(\lambda - 1) + 4\lambda + 4 \][/tex]
[tex]\[ = \lambda^3 - \lambda^2 + \lambda^2 - \lambda - 4\lambda + 4 + 4\lambda + 4 \][/tex]
Simplifying, we have:
[tex]\[ \lambda^3 - 9\lambda \][/tex]
Hence, the determinant is:
[tex]\[ \det(\lambda I - A) = \lambda^3 - 9\lambda \][/tex]
5. Solve for [tex]\(\lambda\)[/tex]:
Set the determinant to zero:
[tex]\[ \lambda^3 - 9\lambda = 0 \][/tex]
Factorize the expression:
[tex]\[ \lambda (\lambda^2 - 9) = 0 \][/tex]
[tex]\[ \lambda (\lambda - 3)(\lambda + 3) = 0 \][/tex]
Solving for [tex]\(\lambda\)[/tex], we get:
[tex]\[ \lambda = 0, \, \lambda = 3, \, \lambda = -3 \][/tex]
Therefore, the values of [tex]\(\lambda\)[/tex] for which the matrix [tex]\(\lambda I - A\)[/tex] is singular are [tex]\(\boxed{-3, 0, \text{ and } 3}\)[/tex].
We appreciate your presence here. Keep sharing knowledge and helping others find the answers they need. This community is the perfect place to learn together. Thank you for choosing IDNLearn.com for your queries. We’re here to provide accurate answers, so visit us again soon.