Expand your knowledge base with the help of IDNLearn.com's extensive answer archive. Join our knowledgeable community and access a wealth of reliable answers to your most pressing questions.
Sagot :
To find the values of [tex]\(\lambda\)[/tex] for which the matrix [tex]\(\lambda I - A\)[/tex] is singular, we need to follow these steps:
1. Given Matrix [tex]\(A\)[/tex] and Identity Matrix [tex]\(I\)[/tex]:
We start with the matrix [tex]\(A\)[/tex]:
[tex]\[ A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \\ \end{pmatrix} \][/tex]
The identity matrix [tex]\(I\)[/tex] of the same size (3x3) is:
[tex]\[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \][/tex]
2. Form the Matrix [tex]\(\lambda I - A\)[/tex]:
The matrix [tex]\(\lambda I - A\)[/tex] is calculated as follows:
[tex]\[ \lambda I - A = \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} - \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \\ \end{pmatrix} \][/tex]
Simplifying this, we get:
[tex]\[ \lambda I - A = \begin{pmatrix} \lambda - 1 & 0 & -2 \\ 0 & \lambda + 1 & 2 \\ -2 & 2 & \lambda \\ \end{pmatrix} \][/tex]
3. Determinant of [tex]\(\lambda I - A\)[/tex]:
To find the values of [tex]\(\lambda\)[/tex] that make this matrix singular, we need to set the determinant of [tex]\(\lambda I - A\)[/tex] to zero and solve for [tex]\(\lambda\)[/tex].
So, we compute the determinant:
[tex]\[ \det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & 0 & -2 \\ 0 & \lambda + 1 & 2 \\ -2 & 2 & \lambda \\ \end{vmatrix} \][/tex]
4. Calculate the Determinant:
We expand the determinant along the first row:
[tex]\[ \det(\lambda I - A) = (\lambda - 1) \begin{vmatrix} \lambda + 1 & 2 \\ 2 & \lambda \\ \end{vmatrix} - 0 \cdot \begin{vmatrix} 0 & -2 \\ -2 & \lambda \\ \end{vmatrix} - 2 \begin{vmatrix} 0 & \lambda + 1 \\ -2 & 2 \\ \end{vmatrix} \][/tex]
Further simplifying each term:
[tex]\[ (\lambda - 1) \left( (\lambda + 1)\lambda - (2 \cdot 2) \right) - 2 \left( 0 \cdot 2 - (-2) \cdot (\lambda + 1) \right) \][/tex]
[tex]\[ = (\lambda - 1)(\lambda^2 + \lambda - 4) + 4(\lambda + 1) \][/tex]
Expanding and combining like terms:
[tex]\[ (\lambda - 1)\lambda^2 + (\lambda - 1)\lambda - 4(\lambda - 1) + 4\lambda + 4 \][/tex]
[tex]\[ = \lambda^3 - \lambda^2 + \lambda^2 - \lambda - 4\lambda + 4 + 4\lambda + 4 \][/tex]
Simplifying, we have:
[tex]\[ \lambda^3 - 9\lambda \][/tex]
Hence, the determinant is:
[tex]\[ \det(\lambda I - A) = \lambda^3 - 9\lambda \][/tex]
5. Solve for [tex]\(\lambda\)[/tex]:
Set the determinant to zero:
[tex]\[ \lambda^3 - 9\lambda = 0 \][/tex]
Factorize the expression:
[tex]\[ \lambda (\lambda^2 - 9) = 0 \][/tex]
[tex]\[ \lambda (\lambda - 3)(\lambda + 3) = 0 \][/tex]
Solving for [tex]\(\lambda\)[/tex], we get:
[tex]\[ \lambda = 0, \, \lambda = 3, \, \lambda = -3 \][/tex]
Therefore, the values of [tex]\(\lambda\)[/tex] for which the matrix [tex]\(\lambda I - A\)[/tex] is singular are [tex]\(\boxed{-3, 0, \text{ and } 3}\)[/tex].
1. Given Matrix [tex]\(A\)[/tex] and Identity Matrix [tex]\(I\)[/tex]:
We start with the matrix [tex]\(A\)[/tex]:
[tex]\[ A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \\ \end{pmatrix} \][/tex]
The identity matrix [tex]\(I\)[/tex] of the same size (3x3) is:
[tex]\[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \][/tex]
2. Form the Matrix [tex]\(\lambda I - A\)[/tex]:
The matrix [tex]\(\lambda I - A\)[/tex] is calculated as follows:
[tex]\[ \lambda I - A = \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} - \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \\ \end{pmatrix} \][/tex]
Simplifying this, we get:
[tex]\[ \lambda I - A = \begin{pmatrix} \lambda - 1 & 0 & -2 \\ 0 & \lambda + 1 & 2 \\ -2 & 2 & \lambda \\ \end{pmatrix} \][/tex]
3. Determinant of [tex]\(\lambda I - A\)[/tex]:
To find the values of [tex]\(\lambda\)[/tex] that make this matrix singular, we need to set the determinant of [tex]\(\lambda I - A\)[/tex] to zero and solve for [tex]\(\lambda\)[/tex].
So, we compute the determinant:
[tex]\[ \det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & 0 & -2 \\ 0 & \lambda + 1 & 2 \\ -2 & 2 & \lambda \\ \end{vmatrix} \][/tex]
4. Calculate the Determinant:
We expand the determinant along the first row:
[tex]\[ \det(\lambda I - A) = (\lambda - 1) \begin{vmatrix} \lambda + 1 & 2 \\ 2 & \lambda \\ \end{vmatrix} - 0 \cdot \begin{vmatrix} 0 & -2 \\ -2 & \lambda \\ \end{vmatrix} - 2 \begin{vmatrix} 0 & \lambda + 1 \\ -2 & 2 \\ \end{vmatrix} \][/tex]
Further simplifying each term:
[tex]\[ (\lambda - 1) \left( (\lambda + 1)\lambda - (2 \cdot 2) \right) - 2 \left( 0 \cdot 2 - (-2) \cdot (\lambda + 1) \right) \][/tex]
[tex]\[ = (\lambda - 1)(\lambda^2 + \lambda - 4) + 4(\lambda + 1) \][/tex]
Expanding and combining like terms:
[tex]\[ (\lambda - 1)\lambda^2 + (\lambda - 1)\lambda - 4(\lambda - 1) + 4\lambda + 4 \][/tex]
[tex]\[ = \lambda^3 - \lambda^2 + \lambda^2 - \lambda - 4\lambda + 4 + 4\lambda + 4 \][/tex]
Simplifying, we have:
[tex]\[ \lambda^3 - 9\lambda \][/tex]
Hence, the determinant is:
[tex]\[ \det(\lambda I - A) = \lambda^3 - 9\lambda \][/tex]
5. Solve for [tex]\(\lambda\)[/tex]:
Set the determinant to zero:
[tex]\[ \lambda^3 - 9\lambda = 0 \][/tex]
Factorize the expression:
[tex]\[ \lambda (\lambda^2 - 9) = 0 \][/tex]
[tex]\[ \lambda (\lambda - 3)(\lambda + 3) = 0 \][/tex]
Solving for [tex]\(\lambda\)[/tex], we get:
[tex]\[ \lambda = 0, \, \lambda = 3, \, \lambda = -3 \][/tex]
Therefore, the values of [tex]\(\lambda\)[/tex] for which the matrix [tex]\(\lambda I - A\)[/tex] is singular are [tex]\(\boxed{-3, 0, \text{ and } 3}\)[/tex].
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Your search for solutions ends here at IDNLearn.com. Thank you for visiting, and come back soon for more helpful information.