IDNLearn.com is the perfect place to get answers, share knowledge, and learn new things. Ask any question and get a detailed, reliable answer from our community of experts.
Sagot :
To find the values of [tex]\(\lambda\)[/tex] for which the matrix [tex]\(\lambda I - A\)[/tex] is singular, we need to follow these steps:
1. Given Matrix [tex]\(A\)[/tex] and Identity Matrix [tex]\(I\)[/tex]:
We start with the matrix [tex]\(A\)[/tex]:
[tex]\[ A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \\ \end{pmatrix} \][/tex]
The identity matrix [tex]\(I\)[/tex] of the same size (3x3) is:
[tex]\[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \][/tex]
2. Form the Matrix [tex]\(\lambda I - A\)[/tex]:
The matrix [tex]\(\lambda I - A\)[/tex] is calculated as follows:
[tex]\[ \lambda I - A = \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} - \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \\ \end{pmatrix} \][/tex]
Simplifying this, we get:
[tex]\[ \lambda I - A = \begin{pmatrix} \lambda - 1 & 0 & -2 \\ 0 & \lambda + 1 & 2 \\ -2 & 2 & \lambda \\ \end{pmatrix} \][/tex]
3. Determinant of [tex]\(\lambda I - A\)[/tex]:
To find the values of [tex]\(\lambda\)[/tex] that make this matrix singular, we need to set the determinant of [tex]\(\lambda I - A\)[/tex] to zero and solve for [tex]\(\lambda\)[/tex].
So, we compute the determinant:
[tex]\[ \det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & 0 & -2 \\ 0 & \lambda + 1 & 2 \\ -2 & 2 & \lambda \\ \end{vmatrix} \][/tex]
4. Calculate the Determinant:
We expand the determinant along the first row:
[tex]\[ \det(\lambda I - A) = (\lambda - 1) \begin{vmatrix} \lambda + 1 & 2 \\ 2 & \lambda \\ \end{vmatrix} - 0 \cdot \begin{vmatrix} 0 & -2 \\ -2 & \lambda \\ \end{vmatrix} - 2 \begin{vmatrix} 0 & \lambda + 1 \\ -2 & 2 \\ \end{vmatrix} \][/tex]
Further simplifying each term:
[tex]\[ (\lambda - 1) \left( (\lambda + 1)\lambda - (2 \cdot 2) \right) - 2 \left( 0 \cdot 2 - (-2) \cdot (\lambda + 1) \right) \][/tex]
[tex]\[ = (\lambda - 1)(\lambda^2 + \lambda - 4) + 4(\lambda + 1) \][/tex]
Expanding and combining like terms:
[tex]\[ (\lambda - 1)\lambda^2 + (\lambda - 1)\lambda - 4(\lambda - 1) + 4\lambda + 4 \][/tex]
[tex]\[ = \lambda^3 - \lambda^2 + \lambda^2 - \lambda - 4\lambda + 4 + 4\lambda + 4 \][/tex]
Simplifying, we have:
[tex]\[ \lambda^3 - 9\lambda \][/tex]
Hence, the determinant is:
[tex]\[ \det(\lambda I - A) = \lambda^3 - 9\lambda \][/tex]
5. Solve for [tex]\(\lambda\)[/tex]:
Set the determinant to zero:
[tex]\[ \lambda^3 - 9\lambda = 0 \][/tex]
Factorize the expression:
[tex]\[ \lambda (\lambda^2 - 9) = 0 \][/tex]
[tex]\[ \lambda (\lambda - 3)(\lambda + 3) = 0 \][/tex]
Solving for [tex]\(\lambda\)[/tex], we get:
[tex]\[ \lambda = 0, \, \lambda = 3, \, \lambda = -3 \][/tex]
Therefore, the values of [tex]\(\lambda\)[/tex] for which the matrix [tex]\(\lambda I - A\)[/tex] is singular are [tex]\(\boxed{-3, 0, \text{ and } 3}\)[/tex].
1. Given Matrix [tex]\(A\)[/tex] and Identity Matrix [tex]\(I\)[/tex]:
We start with the matrix [tex]\(A\)[/tex]:
[tex]\[ A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \\ \end{pmatrix} \][/tex]
The identity matrix [tex]\(I\)[/tex] of the same size (3x3) is:
[tex]\[ I = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} \][/tex]
2. Form the Matrix [tex]\(\lambda I - A\)[/tex]:
The matrix [tex]\(\lambda I - A\)[/tex] is calculated as follows:
[tex]\[ \lambda I - A = \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ \end{pmatrix} - \begin{pmatrix} 1 & 0 & 2 \\ 0 & -1 & -2 \\ 2 & -2 & 0 \\ \end{pmatrix} \][/tex]
Simplifying this, we get:
[tex]\[ \lambda I - A = \begin{pmatrix} \lambda - 1 & 0 & -2 \\ 0 & \lambda + 1 & 2 \\ -2 & 2 & \lambda \\ \end{pmatrix} \][/tex]
3. Determinant of [tex]\(\lambda I - A\)[/tex]:
To find the values of [tex]\(\lambda\)[/tex] that make this matrix singular, we need to set the determinant of [tex]\(\lambda I - A\)[/tex] to zero and solve for [tex]\(\lambda\)[/tex].
So, we compute the determinant:
[tex]\[ \det(\lambda I - A) = \begin{vmatrix} \lambda - 1 & 0 & -2 \\ 0 & \lambda + 1 & 2 \\ -2 & 2 & \lambda \\ \end{vmatrix} \][/tex]
4. Calculate the Determinant:
We expand the determinant along the first row:
[tex]\[ \det(\lambda I - A) = (\lambda - 1) \begin{vmatrix} \lambda + 1 & 2 \\ 2 & \lambda \\ \end{vmatrix} - 0 \cdot \begin{vmatrix} 0 & -2 \\ -2 & \lambda \\ \end{vmatrix} - 2 \begin{vmatrix} 0 & \lambda + 1 \\ -2 & 2 \\ \end{vmatrix} \][/tex]
Further simplifying each term:
[tex]\[ (\lambda - 1) \left( (\lambda + 1)\lambda - (2 \cdot 2) \right) - 2 \left( 0 \cdot 2 - (-2) \cdot (\lambda + 1) \right) \][/tex]
[tex]\[ = (\lambda - 1)(\lambda^2 + \lambda - 4) + 4(\lambda + 1) \][/tex]
Expanding and combining like terms:
[tex]\[ (\lambda - 1)\lambda^2 + (\lambda - 1)\lambda - 4(\lambda - 1) + 4\lambda + 4 \][/tex]
[tex]\[ = \lambda^3 - \lambda^2 + \lambda^2 - \lambda - 4\lambda + 4 + 4\lambda + 4 \][/tex]
Simplifying, we have:
[tex]\[ \lambda^3 - 9\lambda \][/tex]
Hence, the determinant is:
[tex]\[ \det(\lambda I - A) = \lambda^3 - 9\lambda \][/tex]
5. Solve for [tex]\(\lambda\)[/tex]:
Set the determinant to zero:
[tex]\[ \lambda^3 - 9\lambda = 0 \][/tex]
Factorize the expression:
[tex]\[ \lambda (\lambda^2 - 9) = 0 \][/tex]
[tex]\[ \lambda (\lambda - 3)(\lambda + 3) = 0 \][/tex]
Solving for [tex]\(\lambda\)[/tex], we get:
[tex]\[ \lambda = 0, \, \lambda = 3, \, \lambda = -3 \][/tex]
Therefore, the values of [tex]\(\lambda\)[/tex] for which the matrix [tex]\(\lambda I - A\)[/tex] is singular are [tex]\(\boxed{-3, 0, \text{ and } 3}\)[/tex].
We appreciate your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is dedicated to providing accurate answers. Thank you for visiting, and see you next time for more solutions.