IDNLearn.com provides a platform for sharing and gaining valuable knowledge. Our experts provide prompt and accurate answers to help you make informed decisions on any topic.
Sagot :
To solve the problem of finding the vertices of [tex]\(\triangle A'B'C'\)[/tex] after [tex]\(\triangle ABC\)[/tex] is reflected over the x-axis and then dilated by a scale factor of 3 about the origin, follow these steps:
### Step 1: Reflect over the x-axis
Reflecting a point [tex]\((x, y)\)[/tex] over the x-axis changes its y-coordinate to [tex]\(-y\)[/tex]. Let's find the reflected points:
1. Point [tex]\(A = (6, 6)\)[/tex]:
- Reflecting over the x-axis: [tex]\(A_{\text{reflected}} = (6, -6)\)[/tex]
2. Point [tex]\(B = (2, -4)\)[/tex]:
- Reflecting over the x-axis: [tex]\(B_{\text{reflected}} = (2, 4)\)[/tex]
3. Point [tex]\(C = (0, 8)\)[/tex]:
- Reflecting over the x-axis: [tex]\(C_{\text{reflected}} = (0, -8)\)[/tex]
So, the vertices after reflection are:
- [tex]\(A_{\text{reflected}} = (6, -6)\)[/tex]
- [tex]\(B_{\text{reflected}} = (2, 4)\)[/tex]
- [tex]\(C_{\text{reflected}} = (0, -8)\)[/tex]
### Step 2: Dilate by a scale factor of 3
Dilating a point [tex]\((x, y)\)[/tex] by a scale factor [tex]\(k\)[/tex] changes it to [tex]\((kx, ky)\)[/tex]. Let's find the dilated points with a scale factor of 3:
1. Point [tex]\(A_{\text{reflected}} = (6, -6)\)[/tex]:
- Dilating by 3: [tex]\(A' = (6 \times 3, -6 \times 3) = (18, -18)\)[/tex]
2. Point [tex]\(B_{\text{reflected}} = (2, 4)\)[/tex]:
- Dilating by 3: [tex]\(B' = (2 \times 3, 4 \times 3) = (6, 12)\)[/tex]
3. Point [tex]\(C_{\text{reflected}} = (0, -8)\)[/tex]:
- Dilating by 3: [tex]\(C' = (0 \times 3, -8 \times 3) = (0, -24)\)[/tex]
So, the vertices after dilation are:
- [tex]\(A' = (18, -18)\)[/tex]
- [tex]\(B' = (6, 12)\)[/tex]
- [tex]\(C' = (0, -24)\)[/tex]
### Conclusion
Thus, the vertices of [tex]\(\triangle A'B'C'\)[/tex] after reflecting [tex]\(\triangle ABC\)[/tex] over the x-axis and then dilating by a scale factor of 3 are:
- [tex]\(A' = (18, -18)\)[/tex]
- [tex]\(B' = (6, 12)\)[/tex]
- [tex]\(C' = (0, -24)\)[/tex]
These are the final coordinates of [tex]\(\triangle A'B'C'\)[/tex].
### Step 1: Reflect over the x-axis
Reflecting a point [tex]\((x, y)\)[/tex] over the x-axis changes its y-coordinate to [tex]\(-y\)[/tex]. Let's find the reflected points:
1. Point [tex]\(A = (6, 6)\)[/tex]:
- Reflecting over the x-axis: [tex]\(A_{\text{reflected}} = (6, -6)\)[/tex]
2. Point [tex]\(B = (2, -4)\)[/tex]:
- Reflecting over the x-axis: [tex]\(B_{\text{reflected}} = (2, 4)\)[/tex]
3. Point [tex]\(C = (0, 8)\)[/tex]:
- Reflecting over the x-axis: [tex]\(C_{\text{reflected}} = (0, -8)\)[/tex]
So, the vertices after reflection are:
- [tex]\(A_{\text{reflected}} = (6, -6)\)[/tex]
- [tex]\(B_{\text{reflected}} = (2, 4)\)[/tex]
- [tex]\(C_{\text{reflected}} = (0, -8)\)[/tex]
### Step 2: Dilate by a scale factor of 3
Dilating a point [tex]\((x, y)\)[/tex] by a scale factor [tex]\(k\)[/tex] changes it to [tex]\((kx, ky)\)[/tex]. Let's find the dilated points with a scale factor of 3:
1. Point [tex]\(A_{\text{reflected}} = (6, -6)\)[/tex]:
- Dilating by 3: [tex]\(A' = (6 \times 3, -6 \times 3) = (18, -18)\)[/tex]
2. Point [tex]\(B_{\text{reflected}} = (2, 4)\)[/tex]:
- Dilating by 3: [tex]\(B' = (2 \times 3, 4 \times 3) = (6, 12)\)[/tex]
3. Point [tex]\(C_{\text{reflected}} = (0, -8)\)[/tex]:
- Dilating by 3: [tex]\(C' = (0 \times 3, -8 \times 3) = (0, -24)\)[/tex]
So, the vertices after dilation are:
- [tex]\(A' = (18, -18)\)[/tex]
- [tex]\(B' = (6, 12)\)[/tex]
- [tex]\(C' = (0, -24)\)[/tex]
### Conclusion
Thus, the vertices of [tex]\(\triangle A'B'C'\)[/tex] after reflecting [tex]\(\triangle ABC\)[/tex] over the x-axis and then dilating by a scale factor of 3 are:
- [tex]\(A' = (18, -18)\)[/tex]
- [tex]\(B' = (6, 12)\)[/tex]
- [tex]\(C' = (0, -24)\)[/tex]
These are the final coordinates of [tex]\(\triangle A'B'C'\)[/tex].
We value your participation in this forum. Keep exploring, asking questions, and sharing your insights with the community. Together, we can find the best solutions. IDNLearn.com is your reliable source for accurate answers. Thank you for visiting, and we hope to assist you again.