IDNLearn.com provides a platform for sharing and gaining valuable knowledge. Find the information you need quickly and easily with our reliable and thorough Q&A platform.
Sagot :
To determine the coordinates of the stationary points of the function [tex]\( y = \frac{-4 - x^3}{2 x^2} \)[/tex], we need to follow these steps:
1. Find the first derivative of the function:
We start by differentiating [tex]\( y = \frac{-4 - x^3}{2 x^2} \)[/tex] with respect to [tex]\( x \)[/tex]. Let's denote the derivative by [tex]\( y' \)[/tex].
2. Set the derivative equal to zero to find stationary points:
Stationary points occur where the first derivative is equal to zero. So, we solve [tex]\( y' = 0 \)[/tex] for [tex]\( x \)[/tex].
3. Find the corresponding [tex]\( y \)[/tex]-coordinates:
For each [tex]\( x \)[/tex]-value found in the previous step, we substitute it back into the original function [tex]\( y = \frac{-4 - x^3}{2 x^2} \)[/tex] to find the corresponding [tex]\( y \)[/tex]-coordinate.
Let's go through these steps.
### Step 1: Find the first derivative
The given function is:
[tex]\[ y = \frac{-4 - x^3}{2 x^2} \][/tex]
To differentiate [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex], we use the quotient rule:
[tex]\[ \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{u'v - uv'}{v^2} \][/tex]
where [tex]\( u = -4 - x^3 \)[/tex] and [tex]\( v = 2 x^2 \)[/tex].
First, find the derivatives of [tex]\( u \)[/tex] and [tex]\( v \)[/tex]:
[tex]\[ u' = \frac{d}{dx}(-4 - x^3) = -3x^2 \][/tex]
[tex]\[ v' = \frac{d}{dx}(2 x^2) = 4x \][/tex]
Now, apply the quotient rule:
[tex]\[ y' = \frac{(-3x^2)(2x^2) - (-4 - x^3)(4x)}{(2x^2)^2} \][/tex]
[tex]\[ y' = \frac{-6x^4 - (-4 \cdot 4x - x^3 \cdot 4x)}{4x^4} \][/tex]
[tex]\[ y' = \frac{-6x^4 - (-16x - 4x^4)}{4x^4} \][/tex]
[tex]\[ y' = \frac{-6x^4 + 16x + 4x^4}{4x^4} \][/tex]
[tex]\[ y' = \frac{-2x^4 + 16x}{4x^4} \][/tex]
[tex]\[ y' = \frac{-2x^4 + 16x}{4x^4} \][/tex]
We can simplify:
[tex]\[ y' = \frac{16x - 2x^4}{4x^4} \][/tex]
[tex]\[ y' = \frac{16x}{4x^4} - \frac{2x^4}{4x^4} \][/tex]
[tex]\[ y' = \frac{4}{x^3} - \frac{1}{2} \][/tex]
The derivative is:
[tex]\[ y' = -\frac{x^3+4}{2x^3} \][/tex]
### Step 2: Set the derivative equal to zero
To find the stationary points, set the derivative equal to zero:
[tex]\[ -\frac{x^3+4}{2x^3} = 0 \][/tex]
This simplifies to:
[tex]\[ x^3 + 4 = 0 \][/tex]
[tex]\[ x^3 = -4 \][/tex]
[tex]\[ x = \sqrt[3]{-4} \][/tex]
The roots of this equation are:
[tex]\[ x = 2 \][/tex]
and two complex roots:
[tex]\[ x = -1 - \sqrt{3}i \][/tex]
[tex]\[ x = -1 + \sqrt{3}i \][/tex]
### Step 3: Find the corresponding y-coordinates
For each [tex]\( x \)[/tex]-value, we substitute it back into the original function [tex]\( y = \frac{-4 - x^3}{2x^2} \)[/tex] to find the corresponding [tex]\( y \)[/tex]-coordinate.
For [tex]\( x = 2 \)[/tex]:
[tex]\[ y = \frac{-4 - 2^3}{2 \cdot 2^2} \][/tex]
[tex]\[ y = \frac{-4 - 8}{8} \][/tex]
[tex]\[ y = \frac{-12}{8} \][/tex]
[tex]\[ y = -\frac{3}{2} \][/tex]
So, the stationary point is [tex]\( (2, -\frac{3}{2}) \)[/tex].
For [tex]\( x = -1 - \sqrt{3}i \)[/tex]:
[tex]\[ y = \frac{-4 - (-1 - \sqrt{3}i)^3}{2(-1 - \sqrt{3}i)^2} = (-1 - sqrt(3)I, (-4 - (-1 - sqrt(3)I)3)/(2(-1 - sqrt(3)I)2) \][/tex]
Complex calculations of [tex]\( y \)[/tex] for non-real values are:
(-1 - sqrt(3)I, (-4 - (-1 - sqrt(3)I)3)/(2(-1 - sqrt(3)I)2)), (-1 + sqrt(3)I, (-4 - (-1 + sqrt(3)I)3)/(2(-1 + sqrt(3)I)2))
So, the stationary points are:
[tex]\[ (2, -\frac{3}{2}) \][/tex]
[tex]\[ (-1 - \sqrt{3}i , y (-4 - (-1 - sqrt(3)I)3)/(2(-1 - sqrt(3)I)2)) \][/tex]
[tex]\[ (-1 + \sqrt{3}i, y (-4 - (-1 + sqrt(3)I)3)/(2(-1 + sqrt(3)I)2))\][/tex]
These are coordinates of three stationary points for the given function.
1. Find the first derivative of the function:
We start by differentiating [tex]\( y = \frac{-4 - x^3}{2 x^2} \)[/tex] with respect to [tex]\( x \)[/tex]. Let's denote the derivative by [tex]\( y' \)[/tex].
2. Set the derivative equal to zero to find stationary points:
Stationary points occur where the first derivative is equal to zero. So, we solve [tex]\( y' = 0 \)[/tex] for [tex]\( x \)[/tex].
3. Find the corresponding [tex]\( y \)[/tex]-coordinates:
For each [tex]\( x \)[/tex]-value found in the previous step, we substitute it back into the original function [tex]\( y = \frac{-4 - x^3}{2 x^2} \)[/tex] to find the corresponding [tex]\( y \)[/tex]-coordinate.
Let's go through these steps.
### Step 1: Find the first derivative
The given function is:
[tex]\[ y = \frac{-4 - x^3}{2 x^2} \][/tex]
To differentiate [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex], we use the quotient rule:
[tex]\[ \frac{d}{dx} \left( \frac{u}{v} \right) = \frac{u'v - uv'}{v^2} \][/tex]
where [tex]\( u = -4 - x^3 \)[/tex] and [tex]\( v = 2 x^2 \)[/tex].
First, find the derivatives of [tex]\( u \)[/tex] and [tex]\( v \)[/tex]:
[tex]\[ u' = \frac{d}{dx}(-4 - x^3) = -3x^2 \][/tex]
[tex]\[ v' = \frac{d}{dx}(2 x^2) = 4x \][/tex]
Now, apply the quotient rule:
[tex]\[ y' = \frac{(-3x^2)(2x^2) - (-4 - x^3)(4x)}{(2x^2)^2} \][/tex]
[tex]\[ y' = \frac{-6x^4 - (-4 \cdot 4x - x^3 \cdot 4x)}{4x^4} \][/tex]
[tex]\[ y' = \frac{-6x^4 - (-16x - 4x^4)}{4x^4} \][/tex]
[tex]\[ y' = \frac{-6x^4 + 16x + 4x^4}{4x^4} \][/tex]
[tex]\[ y' = \frac{-2x^4 + 16x}{4x^4} \][/tex]
[tex]\[ y' = \frac{-2x^4 + 16x}{4x^4} \][/tex]
We can simplify:
[tex]\[ y' = \frac{16x - 2x^4}{4x^4} \][/tex]
[tex]\[ y' = \frac{16x}{4x^4} - \frac{2x^4}{4x^4} \][/tex]
[tex]\[ y' = \frac{4}{x^3} - \frac{1}{2} \][/tex]
The derivative is:
[tex]\[ y' = -\frac{x^3+4}{2x^3} \][/tex]
### Step 2: Set the derivative equal to zero
To find the stationary points, set the derivative equal to zero:
[tex]\[ -\frac{x^3+4}{2x^3} = 0 \][/tex]
This simplifies to:
[tex]\[ x^3 + 4 = 0 \][/tex]
[tex]\[ x^3 = -4 \][/tex]
[tex]\[ x = \sqrt[3]{-4} \][/tex]
The roots of this equation are:
[tex]\[ x = 2 \][/tex]
and two complex roots:
[tex]\[ x = -1 - \sqrt{3}i \][/tex]
[tex]\[ x = -1 + \sqrt{3}i \][/tex]
### Step 3: Find the corresponding y-coordinates
For each [tex]\( x \)[/tex]-value, we substitute it back into the original function [tex]\( y = \frac{-4 - x^3}{2x^2} \)[/tex] to find the corresponding [tex]\( y \)[/tex]-coordinate.
For [tex]\( x = 2 \)[/tex]:
[tex]\[ y = \frac{-4 - 2^3}{2 \cdot 2^2} \][/tex]
[tex]\[ y = \frac{-4 - 8}{8} \][/tex]
[tex]\[ y = \frac{-12}{8} \][/tex]
[tex]\[ y = -\frac{3}{2} \][/tex]
So, the stationary point is [tex]\( (2, -\frac{3}{2}) \)[/tex].
For [tex]\( x = -1 - \sqrt{3}i \)[/tex]:
[tex]\[ y = \frac{-4 - (-1 - \sqrt{3}i)^3}{2(-1 - \sqrt{3}i)^2} = (-1 - sqrt(3)I, (-4 - (-1 - sqrt(3)I)3)/(2(-1 - sqrt(3)I)2) \][/tex]
Complex calculations of [tex]\( y \)[/tex] for non-real values are:
(-1 - sqrt(3)I, (-4 - (-1 - sqrt(3)I)3)/(2(-1 - sqrt(3)I)2)), (-1 + sqrt(3)I, (-4 - (-1 + sqrt(3)I)3)/(2(-1 + sqrt(3)I)2))
So, the stationary points are:
[tex]\[ (2, -\frac{3}{2}) \][/tex]
[tex]\[ (-1 - \sqrt{3}i , y (-4 - (-1 - sqrt(3)I)3)/(2(-1 - sqrt(3)I)2)) \][/tex]
[tex]\[ (-1 + \sqrt{3}i, y (-4 - (-1 + sqrt(3)I)3)/(2(-1 + sqrt(3)I)2))\][/tex]
These are coordinates of three stationary points for the given function.
Thank you for using this platform to share and learn. Keep asking and answering. We appreciate every contribution you make. Your search for solutions ends at IDNLearn.com. Thank you for visiting, and we look forward to helping you again.