Get expert advice and community support for your questions on IDNLearn.com. Ask any question and receive accurate, in-depth responses from our dedicated team of experts.
Sagot :
To determine the local maximum and local minimum of the function [tex]\( f(x) = 2x + \frac{8}{x} \)[/tex], we will follow these steps:
1. Find the first derivative [tex]\( f'(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx} \left(2x + \frac{8}{x}\right) = 2 - \frac{8}{x^2} \][/tex]
2. Set the first derivative to zero and solve for [tex]\( x \)[/tex] to find the critical points:
[tex]\[ 2 - \frac{8}{x^2} = 0 \][/tex]
[tex]\[ 2 = \frac{8}{x^2} \][/tex]
[tex]\[ 2x^2 = 8 \][/tex]
[tex]\[ x^2 = 4 \][/tex]
[tex]\[ x = \pm 2 \][/tex]
So, the critical points are [tex]\( x = 2 \)[/tex] and [tex]\( x = -2 \)[/tex].
3. Find the second derivative [tex]\( f''(x) \)[/tex]:
[tex]\[ f''(x) = \frac{d}{dx} \left(2 - \frac{8}{x^2}\right) = \frac{16}{x^3} \][/tex]
4. Evaluate the second derivative at each critical point to determine the nature of each point.
- For [tex]\( x = -2 \)[/tex]:
[tex]\[ f''(-2) = \frac{16}{(-2)^3} = \frac{16}{-8} = -2 \][/tex]
Since [tex]\( f''(-2) < 0 \)[/tex], [tex]\( x = -2 \)[/tex] is a point of local maximum.
- For [tex]\( x = 2 \)[/tex]:
[tex]\[ f''(2) = \frac{16}{2^3} = \frac{16}{8} = 2 \][/tex]
Since [tex]\( f''(2) > 0 \)[/tex], [tex]\( x = 2 \)[/tex] is a point of local minimum.
5. Calculate the value of the function at these critical points to find the local extrema:
- For [tex]\( x = -2 \)[/tex]:
[tex]\[ f(-2) = 2(-2) + \frac{8}{-2} = -4 - 4 = -8 \][/tex]
- For [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 2(2) + \frac{8}{2} = 4 + 4 = 8 \][/tex]
Therefore, the function [tex]\( f(x) = 2x + \frac{8}{x} \)[/tex] has:
- A local maximum at [tex]\( x = -2 \)[/tex] with value [tex]\( -8 \)[/tex]
- A local minimum at [tex]\( x = 2 \)[/tex] with value [tex]\( 8 \)[/tex]
Hence, the function has a local maximum at [tex]\( x = -2 \)[/tex] with value [tex]\( -8 \)[/tex] and a local minimum at [tex]\( x = 2 \)[/tex] with value [tex]\( 8 \)[/tex].
1. Find the first derivative [tex]\( f'(x) \)[/tex]:
[tex]\[ f'(x) = \frac{d}{dx} \left(2x + \frac{8}{x}\right) = 2 - \frac{8}{x^2} \][/tex]
2. Set the first derivative to zero and solve for [tex]\( x \)[/tex] to find the critical points:
[tex]\[ 2 - \frac{8}{x^2} = 0 \][/tex]
[tex]\[ 2 = \frac{8}{x^2} \][/tex]
[tex]\[ 2x^2 = 8 \][/tex]
[tex]\[ x^2 = 4 \][/tex]
[tex]\[ x = \pm 2 \][/tex]
So, the critical points are [tex]\( x = 2 \)[/tex] and [tex]\( x = -2 \)[/tex].
3. Find the second derivative [tex]\( f''(x) \)[/tex]:
[tex]\[ f''(x) = \frac{d}{dx} \left(2 - \frac{8}{x^2}\right) = \frac{16}{x^3} \][/tex]
4. Evaluate the second derivative at each critical point to determine the nature of each point.
- For [tex]\( x = -2 \)[/tex]:
[tex]\[ f''(-2) = \frac{16}{(-2)^3} = \frac{16}{-8} = -2 \][/tex]
Since [tex]\( f''(-2) < 0 \)[/tex], [tex]\( x = -2 \)[/tex] is a point of local maximum.
- For [tex]\( x = 2 \)[/tex]:
[tex]\[ f''(2) = \frac{16}{2^3} = \frac{16}{8} = 2 \][/tex]
Since [tex]\( f''(2) > 0 \)[/tex], [tex]\( x = 2 \)[/tex] is a point of local minimum.
5. Calculate the value of the function at these critical points to find the local extrema:
- For [tex]\( x = -2 \)[/tex]:
[tex]\[ f(-2) = 2(-2) + \frac{8}{-2} = -4 - 4 = -8 \][/tex]
- For [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 2(2) + \frac{8}{2} = 4 + 4 = 8 \][/tex]
Therefore, the function [tex]\( f(x) = 2x + \frac{8}{x} \)[/tex] has:
- A local maximum at [tex]\( x = -2 \)[/tex] with value [tex]\( -8 \)[/tex]
- A local minimum at [tex]\( x = 2 \)[/tex] with value [tex]\( 8 \)[/tex]
Hence, the function has a local maximum at [tex]\( x = -2 \)[/tex] with value [tex]\( -8 \)[/tex] and a local minimum at [tex]\( x = 2 \)[/tex] with value [tex]\( 8 \)[/tex].
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Discover insightful answers at IDNLearn.com. We appreciate your visit and look forward to assisting you again.