Get comprehensive solutions to your questions with the help of IDNLearn.com's experts. Our experts provide accurate and detailed responses to help you navigate any topic or issue with confidence.
Sagot :
Sure, let's approach and solve each part of the problem step-by-step.
### Given: Arithmetic Series [tex]\(42, 39, 36, 33, \ldots\)[/tex]
#### Part (i): Find the sum of the first 10 terms of the series.
1. Identify the first term ([tex]\(a\)[/tex]) and the common difference ([tex]\(d\)[/tex]):
- The first term [tex]\(a = 42\)[/tex].
- The second term is [tex]\(39\)[/tex]. The common difference [tex]\(d = 39 - 42 = -3\)[/tex].
2. Number of terms ([tex]\(n\)[/tex]):
- We need the sum of the first 10 terms, so [tex]\(n = 10\)[/tex].
3. Sum of the first [tex]\(n\)[/tex] terms formula:
The sum of the first [tex]\(n\)[/tex] terms of an arithmetic series is given by:
[tex]\[ S_n = \frac{n}{2} \left(2a + (n-1)d\right) \][/tex]
4. Substitute [tex]\(a = 42\)[/tex], [tex]\(d = -3\)[/tex], and [tex]\(n = 10\)[/tex] into the formula:
[tex]\[ S_{10} = \frac{10}{2} \left(2 \cdot 42 + (10-1) \cdot (-3)\right) \][/tex]
[tex]\[ S_{10} = 5 \left(84 - 27\right) \][/tex]
[tex]\[ S_{10} = 5 \times 57 \][/tex]
[tex]\[ S_{10} = 285 \][/tex]
Thus, the sum of the first 10 terms of the series is [tex]\(285\)[/tex].
#### Part (ii): If the sum of the first [tex]\(n\)[/tex] terms of the series is 315, find the possible values of [tex]\(n\)[/tex].
1. Given:
[tex]\[ S_n = 315 \][/tex]
2. Use the sum formula:
[tex]\[ 315 = \frac{n}{2} \left(2 \cdot 42 + (n-1) \cdot (-3)\right) \][/tex]
3. Simplify inside the parentheses:
[tex]\[ 315 = \frac{n}{2} (84 - 3n + 3) \][/tex]
[tex]\[ 315 = \frac{n}{2} (87 - 3n) \][/tex]
[tex]\[ 315 = \frac{87n - 3n^2}{2} \][/tex]
4. Multiply both sides by 2 to clear the fraction:
[tex]\[ 630 = 87n - 3n^2 \][/tex]
[tex]\[ 3n^2 - 87n + 630 = 0 \][/tex]
5. Solve this quadratic equation:
[tex]\[ 3n^2 - 87n + 630 = 0 \][/tex]
Using the quadratic formula [tex]\( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] where [tex]\( a = 3 \)[/tex], [tex]\( b = -87 \)[/tex], and [tex]\( c = 630 \)[/tex]:
6. Calculate the discriminant ([tex]\(\Delta\)[/tex]) and solve for [tex]\(n\)[/tex]:
[tex]\[ \Delta = b^2 - 4ac = (-87)^2 - 4 \cdot 3 \cdot 630 \][/tex]
[tex]\[ \Delta = 7569 - 7560 \][/tex]
[tex]\[ \Delta = 9 \][/tex]
Substituting back into the quadratic formula:
[tex]\[ n = \frac{87 \pm \sqrt{9}}{6} \][/tex]
[tex]\[ n = \frac{87 \pm 3}{6} \][/tex]
7. Calculate the possible values of [tex]\(n\)[/tex]:
[tex]\[ n = \frac{90}{6} = 15 \quad \text{and} \quad n = \frac{84}{6} = 14 \][/tex]
Thus, the possible values of [tex]\(n\)[/tex] are [tex]\(14\)[/tex] and [tex]\(15\)[/tex].
#### Part (iii): Explain the double values of [tex]\(n\)[/tex] obtained in (ii).
The occurrence of two values for [tex]\(n\)[/tex] is a result of solving a quadratic equation. In this particular problem, we derived a quadratic equation from the sum of the arithmetic series:
[tex]\[ 3n^2 - 87n + 630 = 0 \][/tex]
This equation represents a parabola, and parabolas often intersect a horizontal line (representing the sum of 315) at two points. Hence, we get two potential solutions for [tex]\(n\)[/tex]. Each solution represents a valid sequence length ([tex]\(n\)[/tex]) that satisfies the condition [tex]\(S_n = 315\)[/tex]. Therefore, the double values of [tex]\(n\)[/tex] occur due to the nature of quadratic equations, which can have up to two real roots.
### Given: Arithmetic Series [tex]\(42, 39, 36, 33, \ldots\)[/tex]
#### Part (i): Find the sum of the first 10 terms of the series.
1. Identify the first term ([tex]\(a\)[/tex]) and the common difference ([tex]\(d\)[/tex]):
- The first term [tex]\(a = 42\)[/tex].
- The second term is [tex]\(39\)[/tex]. The common difference [tex]\(d = 39 - 42 = -3\)[/tex].
2. Number of terms ([tex]\(n\)[/tex]):
- We need the sum of the first 10 terms, so [tex]\(n = 10\)[/tex].
3. Sum of the first [tex]\(n\)[/tex] terms formula:
The sum of the first [tex]\(n\)[/tex] terms of an arithmetic series is given by:
[tex]\[ S_n = \frac{n}{2} \left(2a + (n-1)d\right) \][/tex]
4. Substitute [tex]\(a = 42\)[/tex], [tex]\(d = -3\)[/tex], and [tex]\(n = 10\)[/tex] into the formula:
[tex]\[ S_{10} = \frac{10}{2} \left(2 \cdot 42 + (10-1) \cdot (-3)\right) \][/tex]
[tex]\[ S_{10} = 5 \left(84 - 27\right) \][/tex]
[tex]\[ S_{10} = 5 \times 57 \][/tex]
[tex]\[ S_{10} = 285 \][/tex]
Thus, the sum of the first 10 terms of the series is [tex]\(285\)[/tex].
#### Part (ii): If the sum of the first [tex]\(n\)[/tex] terms of the series is 315, find the possible values of [tex]\(n\)[/tex].
1. Given:
[tex]\[ S_n = 315 \][/tex]
2. Use the sum formula:
[tex]\[ 315 = \frac{n}{2} \left(2 \cdot 42 + (n-1) \cdot (-3)\right) \][/tex]
3. Simplify inside the parentheses:
[tex]\[ 315 = \frac{n}{2} (84 - 3n + 3) \][/tex]
[tex]\[ 315 = \frac{n}{2} (87 - 3n) \][/tex]
[tex]\[ 315 = \frac{87n - 3n^2}{2} \][/tex]
4. Multiply both sides by 2 to clear the fraction:
[tex]\[ 630 = 87n - 3n^2 \][/tex]
[tex]\[ 3n^2 - 87n + 630 = 0 \][/tex]
5. Solve this quadratic equation:
[tex]\[ 3n^2 - 87n + 630 = 0 \][/tex]
Using the quadratic formula [tex]\( n = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \)[/tex] where [tex]\( a = 3 \)[/tex], [tex]\( b = -87 \)[/tex], and [tex]\( c = 630 \)[/tex]:
6. Calculate the discriminant ([tex]\(\Delta\)[/tex]) and solve for [tex]\(n\)[/tex]:
[tex]\[ \Delta = b^2 - 4ac = (-87)^2 - 4 \cdot 3 \cdot 630 \][/tex]
[tex]\[ \Delta = 7569 - 7560 \][/tex]
[tex]\[ \Delta = 9 \][/tex]
Substituting back into the quadratic formula:
[tex]\[ n = \frac{87 \pm \sqrt{9}}{6} \][/tex]
[tex]\[ n = \frac{87 \pm 3}{6} \][/tex]
7. Calculate the possible values of [tex]\(n\)[/tex]:
[tex]\[ n = \frac{90}{6} = 15 \quad \text{and} \quad n = \frac{84}{6} = 14 \][/tex]
Thus, the possible values of [tex]\(n\)[/tex] are [tex]\(14\)[/tex] and [tex]\(15\)[/tex].
#### Part (iii): Explain the double values of [tex]\(n\)[/tex] obtained in (ii).
The occurrence of two values for [tex]\(n\)[/tex] is a result of solving a quadratic equation. In this particular problem, we derived a quadratic equation from the sum of the arithmetic series:
[tex]\[ 3n^2 - 87n + 630 = 0 \][/tex]
This equation represents a parabola, and parabolas often intersect a horizontal line (representing the sum of 315) at two points. Hence, we get two potential solutions for [tex]\(n\)[/tex]. Each solution represents a valid sequence length ([tex]\(n\)[/tex]) that satisfies the condition [tex]\(S_n = 315\)[/tex]. Therefore, the double values of [tex]\(n\)[/tex] occur due to the nature of quadratic equations, which can have up to two real roots.
We greatly appreciate every question and answer you provide. Keep engaging and finding the best solutions. This community is the perfect place to learn and grow together. Your search for solutions ends here at IDNLearn.com. Thank you for visiting, and come back soon for more helpful information.